import re
import time
import os
import shutil
from copy import copy
from os import environ
from itertools import cycle
import json
from openai import AzureOpenAI, OpenAI, RateLimitError
from rich import print
from .base_translator import Base
from ..config import config
CHATGPT_CONFIG = config["translator"]["chatgptapi"]
PROMPT_ENV_MAP = {
"user": "BBM_CHATGPTAPI_USER_MSG_TEMPLATE",
"system": "BBM_CHATGPTAPI_SYS_MSG",
}
GPT35_MODEL_LIST = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
"gpt-3.5-turbo-0125",
]
GPT4_MODEL_LIST = [
"gpt-4-1106-preview",
"gpt-4",
"gpt-4-32k",
"gpt-4o-2024-05-13",
"gpt-4-0613",
"gpt-4-32k-0613",
]
GPT4oMINI_MODEL_LIST = [
"gpt-4o-mini",
"gpt-4o-mini-2024-07-18",
]
GPT4o_MODEL_LIST = [
"gpt-4o",
"gpt-4o-2024-05-13",
"gpt-4o-2024-08-06",
"chatgpt-4o-latest",
]
O1PREVIEW_MODEL_LIST = [
"o1-preview",
"o1-preview-2024-09-12",
]
O1_MODEL_LIST = [
"o1",
"o1-2024-12-17",
]
O1MINI_MODEL_LIST = [
"o1-mini",
"o1-mini-2024-09-12",
]
O3MINI_MODEL_LIST = [
"o3-mini",
]
class ChatGPTAPI(Base):
DEFAULT_PROMPT = "Please help me to translate,`{text}` to {language}, please return only translated content not include the origin text"
def __init__(
self,
key,
language,
api_base=None,
prompt_template=None,
prompt_sys_msg=None,
temperature=1.0,
context_flag=False,
context_paragraph_limit=0,
**kwargs,
) -> None:
super().__init__(key, language)
self.key_len = len(key.split(","))
self.openai_client = OpenAI(api_key=next(self.keys), base_url=api_base)
self.api_base = api_base
self.prompt_template = (
prompt_template
or environ.get(PROMPT_ENV_MAP["user"])
or self.DEFAULT_PROMPT
)
self.prompt_sys_msg = (
prompt_sys_msg
or environ.get(
"OPENAI_API_SYS_MSG",
) # XXX: for backward compatibility, deprecate soon
or environ.get(PROMPT_ENV_MAP["system"])
or ""
)
self.system_content = environ.get("OPENAI_API_SYS_MSG") or ""
self.deployment_id = None
self.temperature = temperature
self.model_list = None
self.context_flag = context_flag
self.context_list = []
self.context_translated_list = []
if context_paragraph_limit > 0:
# not set by user, use default
self.context_paragraph_limit = context_paragraph_limit
else:
# set by user, use user's value
self.context_paragraph_limit = CHATGPT_CONFIG["context_paragraph_limit"]
self.batch_text_list = []
self.batch_info_cache = None
self.result_content_cache = {}
def rotate_key(self):
self.openai_client.api_key = next(self.keys)
def rotate_model(self):
self.model = next(self.model_list)
def create_messages(self, text, intermediate_messages=None):
content = self.prompt_template.format(
text=text, language=self.language, crlf="\n"
)
sys_content = self.system_content or self.prompt_sys_msg.format(crlf="\n")
messages = [
{"role": "system", "content": sys_content},
]
if intermediate_messages:
messages.extend(intermediate_messages)
messages.append({"role": "user", "content": content})
return messages
def create_context_messages(self):
messages = []
if self.context_flag:
messages.append({"role": "user", "content": "\n".join(self.context_list)})
messages.append(
{
"role": "assistant",
"content": "\n".join(self.context_translated_list),
}
)
return messages
def create_chat_completion(self, text):
messages = self.create_messages(text, self.create_context_messages())
completion = self.openai_client.chat.completions.create(
model=self.model,
messages=messages,
temperature=self.temperature,
)
return completion
def get_translation(self, text):
self.rotate_key()
self.rotate_model() # rotate all the model to avoid the limit
completion = self.create_chat_completion(text)
# TODO work well or exception finish by length limit
# Check if content is not None before encoding
if completion.choices[0].message.content is not None:
t_text = completion.choices[0].message.content.encode("utf8").decode() or ""
else:
t_text = ""
if self.context_flag:
self.save_context(text, t_text)
return t_text
def save_context(self, text, t_text):
if self.context_paragraph_limit > 0:
self.context_list.append(text)
self.context_translated_list.append(t_text)
# Remove the oldest context
if len(self.context_list) > self.context_paragraph_limit:
self.context_list.pop(0)
self.context_translated_list.pop(0)
def translate(self, text, needprint=True):
start_time = time.time()
# todo: Determine whether to print according to the cli option
if needprint:
print(re.sub("\n{3,}", "\n\n", text))
attempt_count = 0
max_attempts = 3
t_text = ""
while attempt_count < max_attempts:
try:
t_text = self.get_translation(text)
break
except RateLimitError as e:
# todo: better sleep time? why sleep alawys about key_len
# 1. openai server error or own network interruption, sleep for a fixed time
# 2. an apikey has no money or reach limit, don`t sleep, just replace it with another apikey
# 3. all apikey reach limit, then use current sleep
sleep_time = int(60 / self.key_len)
print(e, f"will sleep {sleep_time} seconds")
time.sleep(sleep_time)
attempt_count += 1
if attempt_count == max_attempts:
print(f"Get {attempt_count} consecutive exceptions")
raise
except Exception as e:
print(str(e))
return
# todo: Determine whether to print according to the cli option
if needprint:
print("[bold green]" + re.sub("\n{3,}", "\n\n", t_text) + "[/bold green]")
time.time() - start_time
# print(f"translation time: {elapsed_time:.1f}s")
return t_text
def translate_and_split_lines(self, text):
result_str = self.translate(text, False)
lines = result_str.splitlines()
lines = [line.strip() for line in lines if line.strip() != ""]
return lines
def get_best_result_list(
self,
plist_len,
new_str,
sleep_dur,
result_list,
max_retries=15,
):
if len(result_list) == plist_len:
return result_list, 0
best_result_list = result_list
retry_count = 0
# Save original prompt template
original_prompt_template = self.prompt_template
while retry_count < max_retries and len(result_list) != plist_len:
print(
f"bug: {plist_len} -> {len(result_list)} : Number of paragraphs before and after translation",
)
print(f"sleep for {sleep_dur}s and retry {retry_count + 1} ...")
time.sleep(sleep_dur)
retry_count += 1
# Create increasingly strict prompts
structured_prompt = (
f"CRITICAL!!! Translate the following {plist_len} paragraphs to {{language}}. "
f"Your output MUST have EXACTLY {plist_len} paragraphs - NO MORE, NO LESS. "
f"Each paragraph must be wrapped in numbered XML tags:
translated text
" ) self.prompt_template = structured_prompt + " `{text}`" translated_text = self.translate(new_str, False) result_list = self.extract_tagged_paragraphs(translated_text, plist_len) if ( len(result_list) == plist_len or len(best_result_list) < len(result_list) <= plist_len or ( len(result_list) < len(best_result_list) and len(best_result_list) > plist_len ) ): best_result_list = result_list # Restore original prompt self.prompt_template = original_prompt_template # If we still don't have the right number, force it by padding or trimming if len(best_result_list) != plist_len: if len(best_result_list) < plist_len: # Pad with empty strings if we have too few best_result_list.extend([""] * (plist_len - len(best_result_list))) else: # Trim if we have too many best_result_list = best_result_list[:plist_len] return best_result_list, retry_count def log_retry(self, state, retry_count, elapsed_time, log_path="log/buglog.txt"): if retry_count == 0: return print(f"retry {state}") with open(log_path, "a", encoding="utf-8") as f: print( f"retry {state}, count = {retry_count}, time = {elapsed_time:.1f}s", file=f, ) def log_translation_mismatch( self, plist_len, result_list, new_str, sep, log_path="log/buglog.txt", ): if len(result_list) == plist_len: return newlist = new_str.split(sep) with open(log_path, "a", encoding="utf-8") as f: print(f"problem size: {plist_len - len(result_list)}", file=f) for i in range(len(newlist)): print(newlist[i], file=f) print(file=f) if i < len(result_list): print("............................................", file=f) print(result_list[i], file=f) print(file=f) print("=============================", file=f) print( f"bug: {plist_len} paragraphs of text translated into {len(result_list)} paragraphs", ) print("continue") def join_lines(self, text): lines = text.splitlines() new_lines = [] temp_line = [] # join for line in lines: if line.strip(): temp_line.append(line.strip()) else: if temp_line: new_lines.append(" ".join(temp_line)) temp_line = [] new_lines.append(line) if temp_line: new_lines.append(" ".join(temp_line)) text = "\n".join(new_lines) # try to fix #372 if not text: return "" # del ^M text = text.replace("^M", "\r") lines = text.splitlines() filtered_lines = [line for line in lines if line.strip() != "\r"] new_text = "\n".join(filtered_lines) return new_text def translate_list(self, plist): plist_len = len(plist) # Format input with explicit paragraph numbering formatted_paragraphs = [] for i, p in enumerate(plist, 1): temp_p = copy(p) for sup in temp_p.find_all("sup"): sup.extract() formatted_paragraphs.append(f"{temp_p.get_text().strip()}
") # Join with single newlines for cleaner input new_str = "\n".join(formatted_paragraphs) print(f"plist len = {plist_len}") # Save original prompt template original_prompt_template = self.prompt_template # Create a structured prompt that forces exact paragraph count and prevents merging structured_prompt = ( f"Translate the following {plist_len} paragraphs to {{language}}. " f"CRUCIAL: Your output MUST contain EXACTLY {plist_len} paragraphs. " f"Each paragraph is wrapped in numbered tags liketranslated text for paragraph {plist_len}
" ) self.prompt_template = structured_prompt + " `{text}`" # First translation attempt translated_text = self.translate(new_str, False) # Extract paragraphs using the tags result_list = self.extract_tagged_paragraphs(translated_text, plist_len) # If we still don't have the right number, try the retry approach start_time = time.time() if len(result_list) != plist_len: result_list, retry_count = self.get_best_result_list( plist_len, new_str, 6, result_list, ) else: retry_count = 0 end_time = time.time() # Restore original prompt self.prompt_template = original_prompt_template # Clean up the results - strip any XML tags from the final output cleaned_result_list = [] for paragraph in result_list: # Remove any XML tags that might be in the output cleaned_text = re.sub(r"(.*?)
", r"\1", paragraph) # Also clean any partial tags cleaned_text = re.sub(r"?p\d*>", "", cleaned_text).strip() cleaned_result_list.append(cleaned_text) # Check for merged paragraphs and attempt to split them final_result_list = [] for paragraph in cleaned_result_list: # If this is potentially a merged paragraph, try to split it if len(paragraph) > 200 and ". " in paragraph: # Look for sentence patterns that might indicate paragraph breaks potential_paragraphs = re.split(r"(?<=[.!?])\s+(?=[A-Z0-9])", paragraph) # Only split if it would help us get closer to the target paragraph count if ( len(potential_paragraphs) > 1 and len(final_result_list) + len(potential_paragraphs) <= plist_len ): final_result_list.extend(potential_paragraphs) continue final_result_list.append(paragraph) # Ensure we have exactly plist_len paragraphs if len(final_result_list) > plist_len: final_result_list = final_result_list[:plist_len] elif len(final_result_list) < plist_len: final_result_list.extend([""] * (plist_len - len(final_result_list))) # Log results state = "fail" if len(result_list) != plist_len else "success" log_path = "log/buglog.txt" self.log_retry(state, retry_count, end_time - start_time, log_path) if state == "fail": self.log_translation_mismatch( plist_len, result_list, new_str, "\n", log_path ) # Remove ONLY the paragraph numbering formats, not all numbers at the start final_result_list = [ re.sub(r"^(\(\d+\)|\d+\.)\s*", "", s) for s in final_result_list ] return final_result_list def extract_tagged_paragraphs(self, text, plist_len): """Extract paragraphs from text with(.*?)
" matches = re.findall(pattern, text, re.DOTALL) if matches: result_list.append(matches[0].strip()) # If we got all paragraphs, return them if len(result_list) == plist_len: return result_list # Fallback: try general tag pattern pattern = r"(.*?)
" matches = re.findall(pattern, text, re.DOTALL) if matches and len(matches) == plist_len: # Sort by paragraph number matches.sort(key=lambda x: int(x[0])) result_list = [match[1].strip() for match in matches] return result_list # Second fallback: try another approach with numbered paragraphs result_list = [] for i in range(1, plist_len + 1): pattern = rf"\({i}\)\s*(.*?)(?=\s*\({i + 1}\)|\Z)" match = re.search(pattern, text, re.DOTALL) if match: result_list.append(match.group(1).strip()) # If all else fails, fall back to splitting by lines if len(result_list) != plist_len: lines = text.splitlines() non_empty_lines = [line.strip() for line in lines if line.strip()] # Attempt to find paragraph markers and divide accordingly paragraph_markers = [ i for i, line in enumerate(non_empty_lines) if re.match(r"^\s*(\(\d+\)|\d+\.)", line) ] if len(paragraph_markers) == plist_len: result_list = [] for i in range(len(paragraph_markers)): start = paragraph_markers[i] end = ( paragraph_markers[i + 1] if i < len(paragraph_markers) - 1 else len(non_empty_lines) ) paragraph = " ".join(non_empty_lines[start:end]) result_list.append(re.sub(r"^\s*(\(\d+\)|\d+\.)\s*", "", paragraph)) else: # Last resort: try to split evenly result_list = ( non_empty_lines[:plist_len] if len(non_empty_lines) >= plist_len else non_empty_lines ) return result_list def extract_paragraphs(self, text, paragraph_count): """Extract paragraphs from translated text, ensuring paragraph count is preserved.""" # First try to extract by paragraph numbers (1), (2), etc. result_list = [] for i in range(1, paragraph_count + 1): pattern = rf"\({i}\)\s*(.*?)(?=\s*\({i + 1}\)|\Z)" match = re.search(pattern, text, re.DOTALL) if match: result_list.append(match.group(1).strip()) # If exact pattern matching failed, try another approach if len(result_list) != paragraph_count: pattern = r"\((\d+)\)\s*(.*?)(?=\s*\(\d+\)|\Z)" matches = re.findall(pattern, text, re.DOTALL) if matches: # Sort by paragraph number matches.sort(key=lambda x: int(x[0])) result_list = [match[1].strip() for match in matches] # Fallback to original line-splitting approach if len(result_list) != paragraph_count: lines = text.splitlines() result_list = [line.strip() for line in lines if line.strip() != ""] return result_list def set_deployment_id(self, deployment_id): self.deployment_id = deployment_id self.openai_client = AzureOpenAI( api_key=next(self.keys), azure_endpoint=self.api_base, api_version="2023-07-01-preview", azure_deployment=self.deployment_id, ) def set_gpt35_models(self, ollama_model=""): if ollama_model: self.model_list = cycle([ollama_model]) return # gpt3 all models for save the limit if self.deployment_id: self.model_list = cycle(["gpt-35-turbo"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(GPT35_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_gpt4_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["gpt-4"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(GPT4_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_gpt4omini_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["gpt-4o-mini"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(GPT4oMINI_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_gpt4o_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["gpt-4o"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(GPT4o_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_o1preview_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["o1-preview"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(O1PREVIEW_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_o1_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["o1"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(O1_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_o1mini_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["o1-mini"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(O1MINI_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_o3mini_models(self): # for issue #375 azure can not use model list if self.deployment_id: self.model_list = cycle(["o3-mini"]) else: my_model_list = [ i["id"] for i in self.openai_client.models.list().model_dump()["data"] ] model_list = list(set(my_model_list) & set(O3MINI_MODEL_LIST)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def set_model_list(self, model_list): model_list = list(set(model_list)) print(f"Using model list {model_list}") self.model_list = cycle(model_list) def batch_init(self, book_name): self.book_name = self.sanitize_book_name(book_name) def add_to_batch_translate_queue(self, book_index, text): self.batch_text_list.append({"book_index": book_index, "text": text}) def sanitize_book_name(self, book_name): # Replace any characters that are not alphanumeric, underscore, hyphen, or dot with an underscore sanitized_book_name = re.sub(r"[^\w\-_\.]", "_", book_name) # Remove leading and trailing underscores and dots sanitized_book_name = sanitized_book_name.strip("._") return sanitized_book_name def batch_metadata_file_path(self): return os.path.join(os.getcwd(), "batch_files", f"{self.book_name}_info.json") def batch_dir(self): return os.path.join(os.getcwd(), "batch_files", self.book_name) def custom_id(self, book_index): return f"{self.book_name}-{book_index}" def is_completed_batch(self): batch_metadata_file_path = self.batch_metadata_file_path() if not os.path.exists(batch_metadata_file_path): print("Batch result file does not exist") raise Exception("Batch result file does not exist") with open(batch_metadata_file_path, "r", encoding="utf-8") as f: batch_info = json.load(f) for batch_file in batch_info["batch_files"]: batch_status = self.check_batch_status(batch_file["batch_id"]) if batch_status.status != "completed": return False return True def batch_translate(self, book_index): if self.batch_info_cache is None: batch_metadata_file_path = self.batch_metadata_file_path() with open(batch_metadata_file_path, "r", encoding="utf-8") as f: self.batch_info_cache = json.load(f) batch_info = self.batch_info_cache target_batch = None for batch in batch_info["batch_files"]: if batch["start_index"] <= book_index < batch["end_index"]: target_batch = batch break if not target_batch: raise ValueError(f"No batch found for book_index {book_index}") if target_batch["batch_id"] in self.result_content_cache: result_content = self.result_content_cache[target_batch["batch_id"]] else: batch_status = self.check_batch_status(target_batch["batch_id"]) if batch_status.output_file_id is None: raise ValueError(f"Batch {target_batch['batch_id']} is not completed") result_content = self.get_batch_result(batch_status.output_file_id) self.result_content_cache[target_batch["batch_id"]] = result_content result_lines = result_content.text.split("\n") custom_id = self.custom_id(book_index) for line in result_lines: if line.strip(): result = json.loads(line) if result["custom_id"] == custom_id: return result["response"]["body"]["choices"][0]["message"][ "content" ] raise ValueError(f"No result found for custom_id {custom_id}") def create_batch_context_messages(self, index): messages = [] if self.context_flag: if index % CHATGPT_CONFIG[ "batch_context_update_interval" ] == 0 or not hasattr(self, "cached_context_messages"): context_messages = [] for i in range(index - 1, -1, -1): item = self.batch_text_list[i] if len(item["text"].split()) >= 100: context_messages.append(item["text"]) if len(context_messages) == self.context_paragraph_limit: break if len(context_messages) == self.context_paragraph_limit: print("Creating cached context messages") self.cached_context_messages = [ {"role": "user", "content": "\n".join(context_messages)}, { "role": "assistant", "content": self.get_translation( "\n".join(context_messages) ), }, ] if hasattr(self, "cached_context_messages"): messages.extend(self.cached_context_messages) return messages def make_batch_request(self, book_index, text): messages = self.create_messages( text, self.create_batch_context_messages(book_index) ) return { "custom_id": self.custom_id(book_index), "method": "POST", "url": "/v1/chat/completions", "body": { # model shuould not be rotate "model": self.batch_model, "messages": messages, "temperature": self.temperature, }, } def create_batch_files(self, dest_file_path): file_paths = [] # max request 50,000 and max size 100MB lines_per_file = 40000 current_file = 0 for i in range(0, len(self.batch_text_list), lines_per_file): current_file += 1 file_path = os.path.join(dest_file_path, f"{current_file}.jsonl") start_index = i end_index = i + lines_per_file # TODO: Split the file if it exceeds 100MB with open(file_path, "w", encoding="utf-8") as f: for text in self.batch_text_list[i : i + lines_per_file]: batch_req = self.make_batch_request( text["book_index"], text["text"] ) json.dump(batch_req, f, ensure_ascii=False) f.write("\n") file_paths.append( { "file_path": file_path, "start_index": start_index, "end_index": end_index, } ) return file_paths def batch(self): self.rotate_model() self.batch_model = self.model # current working directory batch_dir = self.batch_dir() batch_metadata_file_path = self.batch_metadata_file_path() # cleanup batch dir and result file if os.path.exists(batch_dir): shutil.rmtree(batch_dir) if os.path.exists(batch_metadata_file_path): os.remove(batch_metadata_file_path) os.makedirs(batch_dir, exist_ok=True) # batch execute batch_files = self.create_batch_files(batch_dir) batch_info = [] for batch_file in batch_files: file_id = self.upload_batch_file(batch_file["file_path"]) batch = self.batch_execute(file_id) batch_info.append( self.create_batch_info( file_id, batch, batch_file["start_index"], batch_file["end_index"] ) ) # save batch info batch_info_json = { "book_id": self.book_name, "batch_date": time.strftime("%Y-%m-%d %H:%M:%S"), "batch_files": batch_info, } with open(batch_metadata_file_path, "w", encoding="utf-8") as f: json.dump(batch_info_json, f, ensure_ascii=False, indent=2) def create_batch_info(self, file_id, batch, start_index, end_index): return { "input_file_id": file_id, "batch_id": batch.id, "start_index": start_index, "end_index": end_index, "prefix": self.book_name, } def upload_batch_file(self, file_path): batch_input_file = self.openai_client.files.create( file=open(file_path, "rb"), purpose="batch" ) return batch_input_file.id def batch_execute(self, file_id): current_time = time.strftime("%Y-%m-%d %H:%M:%S") res = self.openai_client.batches.create( input_file_id=file_id, endpoint="/v1/chat/completions", completion_window="24h", metadata={ "description": f"Batch job for {self.book_name} at {current_time}" }, ) if res.errors: print(res.errors) raise Exception(f"Batch execution failed: {res.errors}") return res def check_batch_status(self, batch_id): return self.openai_client.batches.retrieve(batch_id) def get_batch_result(self, output_file_id): return self.openai_client.files.content(output_file_id)