2023-03-16 21:25:47 +08:00

364 lines
13 KiB
Python

import os
import re
import pickle
import tiktoken
import sys
from copy import copy
from pathlib import Path
from bs4 import BeautifulSoup as bs
from bs4.element import NavigableString
from ebooklib import ITEM_DOCUMENT, epub
from rich import print
from tqdm import tqdm
from book_maker.utils import prompt_config_to_kwargs
from .base_loader import BaseBookLoader
class EPUBBookLoaderHelper:
def __init__(self, translate_model, accumulated_num):
self.translate_model = translate_model
self.accumulated_num = accumulated_num
def deal_new(self, p, wait_p_list):
self.deal_old(wait_p_list)
new_p = copy(p)
new_p.string = self.translate_model.translate(p.text)
p.insert_after(new_p)
def deal_old(self, wait_p_list):
if len(wait_p_list) == 0:
return
result_txt_list = self.translate_model.translate_list(wait_p_list)
for i in range(len(wait_p_list)):
if i < len(result_txt_list):
p = wait_p_list[i]
new_p = copy(p)
new_p.string = result_txt_list[i]
p.insert_after(new_p)
wait_p_list.clear()
# ref: https://platform.openai.com/docs/guides/chat/introduction
def num_tokens_from_text(text, model="gpt-3.5-turbo-0301"):
messages = (
{
"role": "user",
"content": text,
},
)
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo-0301": # note: future models may deviate from this
num_tokens = 0
for message in messages:
num_tokens += (
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
)
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
def is_link(text):
url_pattern = re.compile(
r"http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+"
)
return bool(url_pattern.match(text.strip()))
def is_tail_Link(text, num=100):
text = text.strip()
url_pattern = re.compile(
r".*http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+$"
)
return bool(url_pattern.match(text)) and len(text) < num
def is_source(text):
return text.strip().startswith("Source: ")
def is_list(text, num=80):
text = text.strip()
return re.match(r"^Listing\s*\d+", text) and len(text) < num
def is_figure(text, num=80):
text = text.strip()
return re.match(r"^Figure\s*\d+", text) and len(text) < num
class EPUBBookLoader(BaseBookLoader):
def __init__(
self,
epub_name,
model,
key,
resume,
language,
batch_size,
model_api_base=None,
is_test=False,
test_num=5,
translate_tags="p",
allow_navigable_strings=False,
accumulated_num=1,
prompt_template=None,
prompt_config=None,
):
self.epub_name = epub_name
self.new_epub = epub.EpubBook()
self.translate_model = model(
key,
language,
api_base=model_api_base,
**prompt_config_to_kwargs(prompt_config),
)
self.is_test = is_test
self.test_num = test_num
self.translate_tags = translate_tags
self.allow_navigable_strings = allow_navigable_strings
self.accumulated_num = accumulated_num
self.helper = EPUBBookLoaderHelper(self.translate_model, self.accumulated_num)
try:
self.origin_book = epub.read_epub(self.epub_name)
except Exception:
# tricky for #71 if you don't know why please check the issue and ignore this
# when upstream change will TODO fix this
def _load_spine(self):
spine = self.container.find(
"{%s}%s" % (epub.NAMESPACES["OPF"], "spine")
)
self.book.spine = [
(t.get("idref"), t.get("linear", "yes")) for t in spine
]
self.book.set_direction(spine.get("page-progression-direction", None))
epub.EpubReader._load_spine = _load_spine
self.origin_book = epub.read_epub(self.epub_name)
self.p_to_save = []
self.resume = resume
self.bin_path = f"{Path(epub_name).parent}/.{Path(epub_name).stem}.temp.bin"
if self.resume:
self.load_state()
@staticmethod
def _is_special_text(text):
return text.isdigit() or text.isspace() or is_link(text)
def _make_new_book(self, book):
new_book = epub.EpubBook()
new_book.metadata = book.metadata
new_book.spine = book.spine
new_book.toc = book.toc
return new_book
def _process_paragraph(self, p, index, p_to_save_len):
if not p.text or self._is_special_text(p.text):
return index
new_p = copy(p)
if self.resume and index < p_to_save_len:
new_p.string = self.p_to_save[index]
else:
if type(p) == NavigableString:
new_p = self.translate_model.translate(p.text)
self.p_to_save.append(new_p)
else:
new_p.string = self.translate_model.translate(p.text)
self.p_to_save.append(new_p.text)
p.insert_after(new_p)
index += 1
if index % 20 == 0:
self._save_progress()
return index
def translate_paragraphs_acc(self, p_list, send_num):
count = 0
wait_p_list = []
for i in range(len(p_list)):
p = p_list[i]
temp_p = copy(p)
for sup in temp_p.find_all("sup"):
sup.extract()
if (
not p.text
or self._is_special_text(temp_p.text)
or is_source(temp_p.text)
or is_list(temp_p.text)
or is_figure(temp_p.text)
or is_tail_Link(temp_p.text)
):
continue
length = num_tokens_from_text(temp_p.text)
if length > send_num:
self.helper.deal_new(p, wait_p_list)
continue
if i == len(p_list) - 1:
if count + length < send_num:
wait_p_list.append(p)
self.helper.deal_old(wait_p_list)
else:
self.helper.deal_new(p, wait_p_list)
break
if count + length < send_num:
count += length
wait_p_list.append(p)
# This is because the more paragraphs, the easier it is possible to translate different numbers of paragraphs, maybe you should find better values than 15 and 2
# if len(wait_p_list) > 15 and count > send_num / 2:
# self.helper.deal_old(wait_p_list)
# count = 0
else:
self.helper.deal_old(wait_p_list)
wait_p_list.append(p)
count = length
def make_bilingual_book(self):
new_book = self._make_new_book(self.origin_book)
all_items = list(self.origin_book.get_items())
trans_taglist = self.translate_tags.split(",")
all_p_length = sum(
0
if i.get_type() != ITEM_DOCUMENT
else len(bs(i.content, "html.parser").findAll(trans_taglist))
for i in all_items
)
all_p_length += self.allow_navigable_strings * sum(
0
if i.get_type() != ITEM_DOCUMENT
else len(bs(i.content, "html.parser").findAll(text=True))
for i in all_items
)
pbar = tqdm(total=self.test_num) if self.is_test else tqdm(total=all_p_length)
index = 0
p_to_save_len = len(self.p_to_save)
try:
# Add the things that don't need to be translated first, so that you can see the img after the interruption
for item in self.origin_book.get_items():
if item.get_type() != ITEM_DOCUMENT:
new_book.add_item(item)
for item in self.origin_book.get_items_of_type(ITEM_DOCUMENT):
# if item.file_name != "OEBPS/ch01.xhtml":
# continue
if not os.path.exists("log"):
os.makedirs("log")
soup = bs(item.content, "html.parser")
p_list = soup.findAll(trans_taglist)
if self.allow_navigable_strings:
p_list.extend(soup.findAll(text=True))
send_num = self.accumulated_num
if send_num > 1:
with open("log/buglog.txt", "a") as f:
print(f"------------- {item.file_name} -------------", file=f)
print("------------------------------------------------------")
print(f"dealing {item.file_name} ...")
self.translate_paragraphs_acc(p_list, send_num)
else:
is_test_done = self.is_test and index > self.test_num
for p in p_list:
if is_test_done:
break
index = self._process_paragraph(p, index, p_to_save_len)
# pbar.update(delta) not pbar.update(index)?
pbar.update(1)
if self.is_test and index >= self.test_num:
break
item.content = soup.prettify().encode()
new_book.add_item(item)
if self.accumulated_num > 1:
name, _ = os.path.splitext(self.epub_name)
epub.write_epub(f"{name}_bilingual.epub", new_book, {})
name, _ = os.path.splitext(self.epub_name)
epub.write_epub(f"{name}_bilingual.epub", new_book, {})
if self.accumulated_num == 1:
pbar.close()
except (KeyboardInterrupt, Exception) as e:
print(e)
if self.accumulated_num == 1:
print("you can resume it next time")
self._save_progress()
self._save_temp_book()
sys.exit(0)
def load_state(self):
try:
with open(self.bin_path, "rb") as f:
self.p_to_save = pickle.load(f)
except Exception:
raise Exception("can not load resume file")
def _save_temp_book(self):
# TODO refactor this logic
origin_book_temp = epub.read_epub(self.epub_name)
new_temp_book = self._make_new_book(origin_book_temp)
p_to_save_len = len(self.p_to_save)
trans_taglist = self.translate_tags.split(",")
index = 0
try:
for item in origin_book_temp.get_items():
if item.get_type() == ITEM_DOCUMENT:
soup = bs(item.content, "html.parser")
p_list = soup.findAll(trans_taglist)
if self.allow_navigable_strings:
p_list.extend(soup.findAll(text=True))
for p in p_list:
if not p.text or self._is_special_text(p.text):
continue
# TODO banch of p to translate then combine
# PR welcome here
if index < p_to_save_len:
new_p = copy(p)
if type(p) == NavigableString:
new_p = self.p_to_save[index]
else:
new_p.string = self.p_to_save[index]
p.insert_after(new_p)
index += 1
else:
break
# for save temp book
item.content = soup.prettify().encode()
new_temp_book.add_item(item)
name, _ = os.path.splitext(self.epub_name)
epub.write_epub(f"{name}_bilingual_temp.epub", new_temp_book, {})
except Exception as e:
# TODO handle it
print(e)
def _save_progress(self):
try:
with open(self.bin_path, "wb") as f:
pickle.dump(self.p_to_save, f)
except Exception:
raise Exception("can not save resume file")