mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 19:45:21 +00:00
Merge pull request #648 from ekkolon/improve-model-feature-maintainability
refactor: use const for model feature labels
This commit is contained in:
commit
029f3dfa43
@ -26,6 +26,9 @@ from deepface.basemodels import (
|
||||
SFace,
|
||||
)
|
||||
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||
from deepface.extendedmodels.Emotion import EMOTION_LABELS
|
||||
from deepface.extendedmodels.Gender import GENDER_LABELS
|
||||
from deepface.extendedmodels.Race import RACE_LABELS
|
||||
from deepface.commons import functions, realtime, distance as dst
|
||||
|
||||
# -----------------------------------
|
||||
@ -338,21 +341,12 @@ def analyze(
|
||||
sum_of_predictions = emotion_predictions.sum()
|
||||
|
||||
obj["emotion"] = {}
|
||||
emotion_labels = [
|
||||
"angry",
|
||||
"disgust",
|
||||
"fear",
|
||||
"happy",
|
||||
"sad",
|
||||
"surprise",
|
||||
"neutral",
|
||||
]
|
||||
|
||||
for i, emotion_label in enumerate(emotion_labels):
|
||||
for i, emotion_label in enumerate(EMOTION_LABELS):
|
||||
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||
obj["emotion"][emotion_label] = emotion_prediction
|
||||
|
||||
obj["dominant_emotion"] = emotion_labels[np.argmax(emotion_predictions)]
|
||||
obj["dominant_emotion"] = EMOTION_LABELS[np.argmax(emotion_predictions)]
|
||||
|
||||
elif action == "age":
|
||||
age_predictions = models["age"].predict(img_content, verbose=0)[0, :]
|
||||
@ -362,32 +356,23 @@ def analyze(
|
||||
|
||||
elif action == "gender":
|
||||
gender_predictions = models["gender"].predict(img_content, verbose=0)[0, :]
|
||||
gender_labels = ["Woman", "Man"]
|
||||
obj["gender"] = {}
|
||||
for i, gender_label in enumerate(gender_labels):
|
||||
for i, gender_label in enumerate(GENDER_LABELS):
|
||||
gender_prediction = 100 * gender_predictions[i]
|
||||
obj["gender"][gender_label] = gender_prediction
|
||||
|
||||
obj["dominant_gender"] = gender_labels[np.argmax(gender_predictions)]
|
||||
obj["dominant_gender"] = GENDER_LABELS[np.argmax(gender_predictions)]
|
||||
|
||||
elif action == "race":
|
||||
race_predictions = models["race"].predict(img_content, verbose=0)[0, :]
|
||||
sum_of_predictions = race_predictions.sum()
|
||||
|
||||
obj["race"] = {}
|
||||
race_labels = [
|
||||
"asian",
|
||||
"indian",
|
||||
"black",
|
||||
"white",
|
||||
"middle eastern",
|
||||
"latino hispanic",
|
||||
]
|
||||
for i, race_label in enumerate(race_labels):
|
||||
for i, race_label in enumerate(RACE_LABELS):
|
||||
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
||||
obj["race"][race_label] = race_prediction
|
||||
|
||||
obj["dominant_race"] = race_labels[np.argmax(race_predictions)]
|
||||
obj["dominant_race"] = RACE_LABELS[np.argmax(race_predictions)]
|
||||
|
||||
# -----------------------------
|
||||
# mention facial areas
|
||||
|
@ -70,3 +70,7 @@ def loadModel(
|
||||
model.load_weights(home + "/.deepface/weights/facial_expression_model_weights.h5")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
EMOTION_LABELS = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||
"""Labels for the emotions that can be detected by the model."""
|
||||
|
@ -53,3 +53,7 @@ def loadModel(
|
||||
return gender_model
|
||||
|
||||
# --------------------------
|
||||
|
||||
|
||||
GENDER_LABELS = ["Woman", "Man"]
|
||||
"""Labels for the genders that can be detected by the model."""
|
||||
|
@ -50,3 +50,7 @@ def loadModel(
|
||||
race_model.load_weights(home + "/.deepface/weights/race_model_single_batch.h5")
|
||||
|
||||
return race_model
|
||||
|
||||
|
||||
RACE_LABELS = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||
"""Labels for the ethnic phenotypes that can be detected by the model."""
|
||||
|
Loading…
x
Reference in New Issue
Block a user