Merge pull request #794 from AnthraX1/master

This commit is contained in:
Sefik Ilkin Serengil 2023-07-08 16:33:52 +01:00 committed by GitHub
commit 0879926e51
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 82 additions and 1 deletions

View File

@ -194,7 +194,7 @@ Age model got ± 4.65 MAE; gender model got 97.44% accuracy, 96.29% precision an
**Face Detectors** - [`Demo`](https://youtu.be/GZ2p2hj2H5k) **Face Detectors** - [`Demo`](https://youtu.be/GZ2p2hj2H5k)
Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. [`OpenCV`](https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/), [`SSD`](https://sefiks.com/2020/08/25/deep-face-detection-with-opencv-in-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), [`MTCNN`](https://sefiks.com/2020/09/09/deep-face-detection-with-mtcnn-in-python/), [`RetinaFace`](https://sefiks.com/2021/04/27/deep-face-detection-with-retinaface-in-python/), [`MediaPipe`](https://sefiks.com/2022/01/14/deep-face-detection-with-mediapipe/) and [`YOLOv8 Face`](https://github.com/derronqi/yolov8-face) detectors are wrapped in deepface. Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. [`OpenCV`](https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/), [`SSD`](https://sefiks.com/2020/08/25/deep-face-detection-with-opencv-in-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), [`MTCNN`](https://sefiks.com/2020/09/09/deep-face-detection-with-mtcnn-in-python/), [`RetinaFace`](https://sefiks.com/2021/04/27/deep-face-detection-with-retinaface-in-python/), [`MediaPipe`](https://sefiks.com/2022/01/14/deep-face-detection-with-mediapipe/), [`YOLOv8 Face`](https://github.com/derronqi/yolov8-face) and [`YuNet`](https://github.com/ShiqiYu/libfacedetection) detectors are wrapped in deepface.
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/detector-portfolio-v3.jpg" width="95%" height="95%"></p> <p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/detector-portfolio-v3.jpg" width="95%" height="95%"></p>
@ -209,6 +209,7 @@ backends = [
'retinaface', 'retinaface',
'mediapipe', 'mediapipe',
'yolov8', 'yolov8',
'yunet',
] ]
#face verification #face verification

View File

@ -10,6 +10,7 @@ from deepface.detectors import (
RetinaFaceWrapper, RetinaFaceWrapper,
MediapipeWrapper, MediapipeWrapper,
YoloWrapper, YoloWrapper,
YunetWrapper,
) )
@ -24,6 +25,7 @@ def build_model(detector_backend):
"retinaface": RetinaFaceWrapper.build_model, "retinaface": RetinaFaceWrapper.build_model,
"mediapipe": MediapipeWrapper.build_model, "mediapipe": MediapipeWrapper.build_model,
"yolov8": YoloWrapper.build_model, "yolov8": YoloWrapper.build_model,
"yunet": YunetWrapper.build_model,
} }
if not "face_detector_obj" in globals(): if not "face_detector_obj" in globals():
@ -67,6 +69,7 @@ def detect_faces(face_detector, detector_backend, img, align=True):
"retinaface": RetinaFaceWrapper.detect_face, "retinaface": RetinaFaceWrapper.detect_face,
"mediapipe": MediapipeWrapper.detect_face, "mediapipe": MediapipeWrapper.detect_face,
"yolov8": YoloWrapper.detect_face, "yolov8": YoloWrapper.detect_face,
"yunet": YunetWrapper.detect_face,
} }
detect_face_fn = backends.get(detector_backend) detect_face_fn = backends.get(detector_backend)

View File

@ -0,0 +1,77 @@
import cv2
import os
import gdown
from deepface.detectors import FaceDetector
from deepface.commons import functions
def build_model():
url = "https://github.com/opencv/opencv_zoo/raw/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx"
file_name = "face_detection_yunet_2023mar.onnx"
home = functions.get_deepface_home()
if os.path.isfile(home + f"/.deepface/weights/{file_name}") is False:
print(f"{file_name} will be downloaded...")
output = home + f"/.deepface/weights/{file_name}"
gdown.download(url, output, quiet=False)
face_detector = cv2.FaceDetectorYN_create(
home + f"/.deepface/weights/{file_name}", "", (0, 0)
)
return face_detector
def detect_face(detector, image, align=True, score_threshold=0.9):
# FaceDetector.detect_faces does not support score_threshold parameter.
# We can set it via environment variable.
score_threshold = os.environ.get("yunet_score_threshold", score_threshold)
resp = []
detected_face = None
img_region = [0, 0, image.shape[1], image.shape[0]]
faces = []
height, width = image.shape[0], image.shape[1]
# resize image if it is too large (Yunet fails to detect faces on large input sometimes)
# I picked 640 as a threshold because it is the default value of max_size in Yunet.
resized = False
if height > 640 or width > 640:
r = 640.0 / max(height, width)
original_image = image.copy()
image = cv2.resize(image, (int(width * r), int(height * r)))
height, width = image.shape[0], image.shape[1]
resized = True
detector.setInputSize((width, height))
detector.setScoreThreshold(score_threshold)
_, faces = detector.detect(image)
if faces is None:
return resp
for face in faces:
"""
The detection output faces is a two-dimension array of type CV_32F,
whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks.
The format of each row is as follows:
x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm,
where x1, y1, w, h are the top-left coordinates, width and height of the face bounding box,
{x, y}_{re, le, nt, rcm, lcm} stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively.
"""
(x, y, w, h, x_re, y_re, x_le, y_le) = list(map(int, face[:8]))
if resized:
image = original_image
x, y, w, h = int(x / r), int(y / r), int(w / r), int(h / r)
x_re, y_re, x_le, y_le = (
int(x_re / r),
int(y_re / r),
int(x_le / r),
int(y_le / r),
)
confidence = face[-1]
confidence = "{:.2f}".format(confidence)
detected_face = image[int(y) : int(y + h), int(x) : int(x + w)]
img_region = [x, y, w, h]
if align:
detected_face = yunet_align_face(detected_face, x_re, y_re, x_le, y_le)
resp.append((detected_face, img_region, confidence))
return resp
# x_re, y_re, x_le, y_le stands for the coordinates of right eye, left eye
def yunet_align_face(img, x_re, y_re, x_le, y_le):
img = FaceDetector.alignment_procedure(img, (x_le, y_le), (x_re, y_re))
return img