mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Merge pull request #794 from AnthraX1/master
This commit is contained in:
commit
0879926e51
@ -194,7 +194,7 @@ Age model got ± 4.65 MAE; gender model got 97.44% accuracy, 96.29% precision an
|
|||||||
|
|
||||||
**Face Detectors** - [`Demo`](https://youtu.be/GZ2p2hj2H5k)
|
**Face Detectors** - [`Demo`](https://youtu.be/GZ2p2hj2H5k)
|
||||||
|
|
||||||
Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. [`OpenCV`](https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/), [`SSD`](https://sefiks.com/2020/08/25/deep-face-detection-with-opencv-in-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), [`MTCNN`](https://sefiks.com/2020/09/09/deep-face-detection-with-mtcnn-in-python/), [`RetinaFace`](https://sefiks.com/2021/04/27/deep-face-detection-with-retinaface-in-python/), [`MediaPipe`](https://sefiks.com/2022/01/14/deep-face-detection-with-mediapipe/) and [`YOLOv8 Face`](https://github.com/derronqi/yolov8-face) detectors are wrapped in deepface.
|
Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. [`OpenCV`](https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/), [`SSD`](https://sefiks.com/2020/08/25/deep-face-detection-with-opencv-in-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), [`MTCNN`](https://sefiks.com/2020/09/09/deep-face-detection-with-mtcnn-in-python/), [`RetinaFace`](https://sefiks.com/2021/04/27/deep-face-detection-with-retinaface-in-python/), [`MediaPipe`](https://sefiks.com/2022/01/14/deep-face-detection-with-mediapipe/), [`YOLOv8 Face`](https://github.com/derronqi/yolov8-face) and [`YuNet`](https://github.com/ShiqiYu/libfacedetection) detectors are wrapped in deepface.
|
||||||
|
|
||||||
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/detector-portfolio-v3.jpg" width="95%" height="95%"></p>
|
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/detector-portfolio-v3.jpg" width="95%" height="95%"></p>
|
||||||
|
|
||||||
@ -209,6 +209,7 @@ backends = [
|
|||||||
'retinaface',
|
'retinaface',
|
||||||
'mediapipe',
|
'mediapipe',
|
||||||
'yolov8',
|
'yolov8',
|
||||||
|
'yunet',
|
||||||
]
|
]
|
||||||
|
|
||||||
#face verification
|
#face verification
|
||||||
|
@ -10,6 +10,7 @@ from deepface.detectors import (
|
|||||||
RetinaFaceWrapper,
|
RetinaFaceWrapper,
|
||||||
MediapipeWrapper,
|
MediapipeWrapper,
|
||||||
YoloWrapper,
|
YoloWrapper,
|
||||||
|
YunetWrapper,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -24,6 +25,7 @@ def build_model(detector_backend):
|
|||||||
"retinaface": RetinaFaceWrapper.build_model,
|
"retinaface": RetinaFaceWrapper.build_model,
|
||||||
"mediapipe": MediapipeWrapper.build_model,
|
"mediapipe": MediapipeWrapper.build_model,
|
||||||
"yolov8": YoloWrapper.build_model,
|
"yolov8": YoloWrapper.build_model,
|
||||||
|
"yunet": YunetWrapper.build_model,
|
||||||
}
|
}
|
||||||
|
|
||||||
if not "face_detector_obj" in globals():
|
if not "face_detector_obj" in globals():
|
||||||
@ -67,6 +69,7 @@ def detect_faces(face_detector, detector_backend, img, align=True):
|
|||||||
"retinaface": RetinaFaceWrapper.detect_face,
|
"retinaface": RetinaFaceWrapper.detect_face,
|
||||||
"mediapipe": MediapipeWrapper.detect_face,
|
"mediapipe": MediapipeWrapper.detect_face,
|
||||||
"yolov8": YoloWrapper.detect_face,
|
"yolov8": YoloWrapper.detect_face,
|
||||||
|
"yunet": YunetWrapper.detect_face,
|
||||||
}
|
}
|
||||||
|
|
||||||
detect_face_fn = backends.get(detector_backend)
|
detect_face_fn = backends.get(detector_backend)
|
||||||
|
77
deepface/detectors/YunetWrapper.py
Normal file
77
deepface/detectors/YunetWrapper.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
import gdown
|
||||||
|
from deepface.detectors import FaceDetector
|
||||||
|
from deepface.commons import functions
|
||||||
|
|
||||||
|
|
||||||
|
def build_model():
|
||||||
|
url = "https://github.com/opencv/opencv_zoo/raw/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx"
|
||||||
|
file_name = "face_detection_yunet_2023mar.onnx"
|
||||||
|
home = functions.get_deepface_home()
|
||||||
|
if os.path.isfile(home + f"/.deepface/weights/{file_name}") is False:
|
||||||
|
print(f"{file_name} will be downloaded...")
|
||||||
|
output = home + f"/.deepface/weights/{file_name}"
|
||||||
|
gdown.download(url, output, quiet=False)
|
||||||
|
face_detector = cv2.FaceDetectorYN_create(
|
||||||
|
home + f"/.deepface/weights/{file_name}", "", (0, 0)
|
||||||
|
)
|
||||||
|
return face_detector
|
||||||
|
|
||||||
|
|
||||||
|
def detect_face(detector, image, align=True, score_threshold=0.9):
|
||||||
|
# FaceDetector.detect_faces does not support score_threshold parameter.
|
||||||
|
# We can set it via environment variable.
|
||||||
|
score_threshold = os.environ.get("yunet_score_threshold", score_threshold)
|
||||||
|
resp = []
|
||||||
|
detected_face = None
|
||||||
|
img_region = [0, 0, image.shape[1], image.shape[0]]
|
||||||
|
faces = []
|
||||||
|
height, width = image.shape[0], image.shape[1]
|
||||||
|
# resize image if it is too large (Yunet fails to detect faces on large input sometimes)
|
||||||
|
# I picked 640 as a threshold because it is the default value of max_size in Yunet.
|
||||||
|
resized = False
|
||||||
|
if height > 640 or width > 640:
|
||||||
|
r = 640.0 / max(height, width)
|
||||||
|
original_image = image.copy()
|
||||||
|
image = cv2.resize(image, (int(width * r), int(height * r)))
|
||||||
|
height, width = image.shape[0], image.shape[1]
|
||||||
|
resized = True
|
||||||
|
detector.setInputSize((width, height))
|
||||||
|
detector.setScoreThreshold(score_threshold)
|
||||||
|
_, faces = detector.detect(image)
|
||||||
|
if faces is None:
|
||||||
|
return resp
|
||||||
|
for face in faces:
|
||||||
|
"""
|
||||||
|
The detection output faces is a two-dimension array of type CV_32F,
|
||||||
|
whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks.
|
||||||
|
The format of each row is as follows:
|
||||||
|
x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm,
|
||||||
|
where x1, y1, w, h are the top-left coordinates, width and height of the face bounding box,
|
||||||
|
{x, y}_{re, le, nt, rcm, lcm} stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively.
|
||||||
|
"""
|
||||||
|
(x, y, w, h, x_re, y_re, x_le, y_le) = list(map(int, face[:8]))
|
||||||
|
if resized:
|
||||||
|
image = original_image
|
||||||
|
x, y, w, h = int(x / r), int(y / r), int(w / r), int(h / r)
|
||||||
|
x_re, y_re, x_le, y_le = (
|
||||||
|
int(x_re / r),
|
||||||
|
int(y_re / r),
|
||||||
|
int(x_le / r),
|
||||||
|
int(y_le / r),
|
||||||
|
)
|
||||||
|
confidence = face[-1]
|
||||||
|
confidence = "{:.2f}".format(confidence)
|
||||||
|
detected_face = image[int(y) : int(y + h), int(x) : int(x + w)]
|
||||||
|
img_region = [x, y, w, h]
|
||||||
|
if align:
|
||||||
|
detected_face = yunet_align_face(detected_face, x_re, y_re, x_le, y_le)
|
||||||
|
resp.append((detected_face, img_region, confidence))
|
||||||
|
return resp
|
||||||
|
|
||||||
|
|
||||||
|
# x_re, y_re, x_le, y_le stands for the coordinates of right eye, left eye
|
||||||
|
def yunet_align_face(img, x_re, y_re, x_le, y_le):
|
||||||
|
img = FaceDetector.alignment_procedure(img, (x_le, y_le), (x_re, y_re))
|
||||||
|
return img
|
Loading…
x
Reference in New Issue
Block a user