Refactor: moved is_valid_landmark to closure, improved landmark_sanitization test

This commit is contained in:
Toys_On_Desk 2025-07-01 14:26:29 +05:30
parent 07dcb87a9b
commit 0a65934c56
2 changed files with 37 additions and 54 deletions

View File

@ -80,30 +80,6 @@ def extract_faces(
just available in the result only if anti_spoofing is set to True in input arguments. just available in the result only if anti_spoofing is set to True in input arguments.
""" """
def is_valid_landmark(coord, width, height):
"""
Check if a landmark coordinate is within valid image bounds
Args:
coord: (x, y) tuple or None; width; height: image dimensions
Returns True if coord is a valid (x, y) inside the image, else False
Returns:
bool: True if coordinate is valid and within bounds, False otherwise
"""
if coord is None:
return False
# handle case where coord might not be a tuple/list
try:
x, y = coord
except (TypeError, ValueError):
return False
# check if coordinates are within image bounds
return 0 <= x < width and 0 <= y < height
resp_objs = [] resp_objs = []
# img might be path, base64 or numpy array. Convert it to numpy whatever it is. # img might be path, base64 or numpy array. Convert it to numpy whatever it is.
@ -114,6 +90,22 @@ def extract_faces(
height, width, _ = img.shape height, width, _ = img.shape
def is_valid_landmark(coord: Optional[Union[tuple, list]]) -> bool:
"""
Check if a landmark coordinate is within valid image bounds.
Args:
coord (tuple or list or None): (x, y) coordinate to check.
Returns:
bool: True if coordinate is valid and within bounds, False otherwise.
"""
if coord is None:
return False
if not (isinstance(coord, (tuple, list)) and len(coord) == 2):
return False
x, y = coord
return 0 <= x < width and 0 <= y < height
base_region = FacialAreaRegion(x=0, y=0, w=width, h=height, confidence=0) base_region = FacialAreaRegion(x=0, y=0, w=width, h=height, confidence=0)
if detector_backend == "skip": if detector_backend == "skip":
@ -173,7 +165,6 @@ def extract_faces(
w = min(width - x - 1, int(current_region.w)) w = min(width - x - 1, int(current_region.w))
h = min(height - y - 1, int(current_region.h)) h = min(height - y - 1, int(current_region.h))
# landmark vaildation
landmarks = { landmarks = {
"left_eye":current_region.left_eye, "left_eye":current_region.left_eye,
"right_eye":current_region.right_eye, "right_eye":current_region.right_eye,
@ -184,7 +175,7 @@ def extract_faces(
# Sanitize landmarks - set invalid ones to None # Sanitize landmarks - set invalid ones to None
for key, value in landmarks.items(): for key, value in landmarks.items():
if not is_valid_landmark(value, width, height): if not is_valid_landmark(value):
landmarks[key] = None landmarks[key] = None

View File

@ -1,17 +1,19 @@
import numpy as np import numpy as np
import pytest import pytest
from deepface.modules.detection import extract_faces, DetectedFace, FacialAreaRegion from deepface.modules.detection import extract_faces, DetectedFace, FacialAreaRegion
from deepface.commons.logger import Logger
logger = Logger()
def is_valid_landmark(coord, width, height):
if coord is None:
return False
if not (isinstance(coord, (tuple, list)) and len(coord) == 2):
return False
x, y = coord
return 0 <= x < width and 0 <= y < height
def sanitize_landmarks(region, width, height): def sanitize_landmarks(region, width, height):
def is_valid_landmark(coord, width, height):
if coord is None:
return False
try:
x, y = coord
except (TypeError, ValueError):
return False
return 0 <= x < width and 0 <= y < height
landmarks = { landmarks = {
"left_eye": region.left_eye, "left_eye": region.left_eye,
"right_eye": region.right_eye, "right_eye": region.right_eye,
@ -20,11 +22,13 @@ def sanitize_landmarks(region, width, height):
"mouth_right": region.mouth_right, "mouth_right": region.mouth_right,
} }
for key, value in landmarks.items(): for key, value in landmarks.items():
if not is_valid_landmark(value, 100, 100): if not is_valid_landmark(value, width, height):
landmarks[key] = None landmarks[key] = None
return landmarks return landmarks
def test_sanitize_landmarks(): def test_sanitize_landmarks():
img = np.zeros((100, 100, 3), dtype=np.uint8)
height, width = img.shape[:2]
region = FacialAreaRegion( region = FacialAreaRegion(
x=10, y=10, w=50, h=50, x=10, y=10, w=50, h=50,
left_eye=(-5, 20), # invalid left_eye=(-5, 20), # invalid
@ -34,20 +38,17 @@ def test_sanitize_landmarks():
mouth_right=(20, -10), # invalid mouth_right=(20, -10), # invalid
confidence=0.9 confidence=0.9
) )
landmarks = sanitize_landmarks(region, 100, 100) landmarks = sanitize_landmarks(region, width, height)
print("Sanitized landmarks:", landmarks) logger.info(f"Sanitized landmarks: {landmarks}")
assert landmarks["left_eye"] is None assert landmarks["left_eye"] is None
assert landmarks["right_eye"] is None assert landmarks["right_eye"] is None
assert landmarks["nose"] == (30, 30) assert landmarks["nose"] == (30, 30)
assert landmarks["mouth_left"] is None assert landmarks["mouth_left"] is None
assert landmarks["mouth_right"] is None assert landmarks["mouth_right"] is None
print("Test passed: Invalid landmarks are sanitized to None.") logger.info("Test passed: Invalid landmarks are sanitized to None.")
def test_extract_faces_sanitizes_landmarks(monkeypatch): def test_extract_faces_sanitizes_landmarks(monkeypatch):
# Create a dummy image
img = np.zeros((100, 100, 3), dtype=np.uint8) img = np.zeros((100, 100, 3), dtype=np.uint8)
# Create a DetectedFace with off-image landmarks
facial_area = FacialAreaRegion( facial_area = FacialAreaRegion(
x=10, y=10, w=50, h=50, x=10, y=10, w=50, h=50,
left_eye=(-5, 20), # invalid left_eye=(-5, 20), # invalid
@ -58,21 +59,12 @@ def test_extract_faces_sanitizes_landmarks(monkeypatch):
confidence=0.9 confidence=0.9
) )
detected_face = DetectedFace(img=img, facial_area=facial_area, confidence=0.9) detected_face = DetectedFace(img=img, facial_area=facial_area, confidence=0.9)
monkeypatch.setattr("deepface.modules.detection.detect_faces", lambda *args, **kwargs: [detected_face])
# Patch detect_faces to return our test face
monkeypatch.setattr("f_deepface.deepface.modules.detection.detect_faces", lambda *args, **kwargs: [detected_face])
# Use a different backend that will call detect_faces
result = extract_faces(img, detector_backend="opencv", enforce_detection=False) result = extract_faces(img, detector_backend="opencv", enforce_detection=False)
facial_area_out = result[0]["facial_area"] facial_area_out = result[0]["facial_area"]
logger.info(f"Output facial_area: {facial_area_out}")
print("Output facial_area:", facial_area_out) # Debug print
assert facial_area_out["left_eye"] is None assert facial_area_out["left_eye"] is None
assert facial_area_out["right_eye"] is None assert facial_area_out["right_eye"] is None
assert facial_area_out.get("nose") == (30, 30) assert facial_area_out.get("nose") == (30, 30)
assert facial_area_out.get("mouth_left") is None assert facial_area_out.get("mouth_left") is None
assert facial_area_out.get("mouth_right") is None assert facial_area_out.get("mouth_right") is None
if __name__ == "__main__":
test_sanitize_landmarks()