mirror of
https://github.com/serengil/deepface.git
synced 2025-06-08 20:45:22 +00:00
common boosting function
This commit is contained in:
parent
5963ea4d2b
commit
0b257841cb
@ -145,23 +145,10 @@ def verify(img1_path, img2_path = '', model_name = 'VGG-Face', distance_metric =
|
|||||||
ensemble_features_string += "]"
|
ensemble_features_string += "]"
|
||||||
|
|
||||||
#-------------------------------
|
#-------------------------------
|
||||||
#find deepface path
|
|
||||||
|
deepface_ensemble = functions.boosting_method()
|
||||||
|
|
||||||
home = str(Path.home())
|
#---------------------------
|
||||||
|
|
||||||
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
|
||||||
print("face-recognition-ensemble-model.txt will be downloaded...")
|
|
||||||
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
|
||||||
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
|
||||||
gdown.download(url, output, quiet=False)
|
|
||||||
|
|
||||||
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
|
||||||
|
|
||||||
#print(ensemble_model_path)
|
|
||||||
|
|
||||||
#-------------------------------
|
|
||||||
|
|
||||||
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
|
||||||
|
|
||||||
prediction = deepface_ensemble.predict(np.expand_dims(np.array(ensemble_features), axis=0))[0]
|
prediction = deepface_ensemble.predict(np.expand_dims(np.array(ensemble_features), axis=0))[0]
|
||||||
|
|
||||||
@ -680,18 +667,8 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
x = df[feature_names].values
|
x = df[feature_names].values
|
||||||
|
|
||||||
#----------------------------------
|
#----------------------------------
|
||||||
#lightgbm model
|
#lightgbm model
|
||||||
home = str(Path.home())
|
deepface_ensemble = functions.boosting_method()
|
||||||
|
|
||||||
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
|
||||||
print("face-recognition-ensemble-model.txt will be downloaded...")
|
|
||||||
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
|
||||||
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
|
||||||
gdown.download(url, output, quiet=False)
|
|
||||||
|
|
||||||
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
|
||||||
|
|
||||||
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
|
||||||
|
|
||||||
y = deepface_ensemble.predict(x)
|
y = deepface_ensemble.predict(x)
|
||||||
|
|
||||||
|
@ -447,3 +447,21 @@ def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_dete
|
|||||||
img_pixels /= 255 #normalize input in [0, 1]
|
img_pixels /= 255 #normalize input in [0, 1]
|
||||||
|
|
||||||
return img_pixels
|
return img_pixels
|
||||||
|
|
||||||
|
def boosting_method():
|
||||||
|
|
||||||
|
import lightgbm as lgb #lightgbm==2.3.1
|
||||||
|
|
||||||
|
home = str(Path.home())
|
||||||
|
|
||||||
|
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
||||||
|
print("face-recognition-ensemble-model.txt will be downloaded...")
|
||||||
|
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
||||||
|
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
|
gdown.download(url, output, quiet=False)
|
||||||
|
|
||||||
|
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
|
|
||||||
|
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
||||||
|
|
||||||
|
return deepface_ensemble
|
||||||
|
@ -242,19 +242,3 @@ print(df)
|
|||||||
#-----------------------------------
|
#-----------------------------------
|
||||||
print("--------------------------")
|
print("--------------------------")
|
||||||
|
|
||||||
print("Different face detector backends")
|
|
||||||
|
|
||||||
backends = ['opencv', 'ssd', 'dlib', 'mtcnn']
|
|
||||||
|
|
||||||
for backend in backends:
|
|
||||||
|
|
||||||
tic = time.time()
|
|
||||||
|
|
||||||
processed_img = functions.preprocess_face(img = "dataset/img11.jpg", detector_backend = backend)
|
|
||||||
|
|
||||||
toc = time.time()
|
|
||||||
|
|
||||||
print("Backend ", backend, " is done in ", toc-tic," seconds")
|
|
||||||
|
|
||||||
#-----------------------------------
|
|
||||||
print("--------------------------")
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user