batched inputs in representation

This commit is contained in:
galthran-wq 2025-02-11 13:01:29 +00:00
parent 72e82f0605
commit 0ef420bc10
2 changed files with 88 additions and 60 deletions

View File

@ -18,7 +18,7 @@ class FacialRecognition(ABC):
input_shape: Tuple[int, int] input_shape: Tuple[int, int]
output_shape: int output_shape: int
def forward(self, img: np.ndarray) -> List[float]: def forward(self, img: np.ndarray) -> Union[List[float], List[List[float]]]:
if not isinstance(self.model, Model): if not isinstance(self.model, Model):
raise ValueError( raise ValueError(
"You must overwrite forward method if it is not a keras model," "You must overwrite forward method if it is not a keras model,"
@ -26,4 +26,10 @@ class FacialRecognition(ABC):
) )
# model.predict causes memory issue when it is called in a for loop # model.predict causes memory issue when it is called in a for loop
# embedding = model.predict(img, verbose=0)[0].tolist() # embedding = model.predict(img, verbose=0)[0].tolist()
return self.model(img, training=False).numpy()[0].tolist() if img.shape == 4 and img.shape[0] == 1:
img = img[0]
embeddings = self.model(img, training=False).numpy()
if embeddings.shape[0] == 1:
return embeddings[0].tolist()
else:
return embeddings.tolist()

View File

@ -11,7 +11,7 @@ from deepface.models.FacialRecognition import FacialRecognition
def represent( def represent(
img_path: Union[str, np.ndarray], img_path: Union[str, np.ndarray, List[Union[str, np.ndarray]]],
model_name: str = "VGG-Face", model_name: str = "VGG-Face",
enforce_detection: bool = True, enforce_detection: bool = True,
detector_backend: str = "opencv", detector_backend: str = "opencv",
@ -25,9 +25,9 @@ def represent(
Represent facial images as multi-dimensional vector embeddings. Represent facial images as multi-dimensional vector embeddings.
Args: Args:
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format, img_path (str, np.ndarray, or list): The exact path to the image, a numpy array in BGR format,
or a base64 encoded image. If the source image contains multiple faces, the result will a base64 encoded image, or a list of these. If the source image contains multiple faces,
include information for each detected face. the result will include information for each detected face.
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512, model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet
@ -70,12 +70,25 @@ def represent(
task="facial_recognition", model_name=model_name task="facial_recognition", model_name=model_name
) )
# Handle list of image paths or 4D numpy array
if isinstance(img_path, list):
images = img_path
elif isinstance(img_path, np.ndarray) and img_path.ndim == 4:
images = [img_path[i] for i in range(img_path.shape[0])]
else:
images = [img_path]
batch_images = []
batch_regions = []
batch_confidences = []
for single_img_path in images:
# --------------------------------- # ---------------------------------
# we have run pre-process in verification. so, this can be skipped if it is coming from verify. # we have run pre-process in verification. so, this can be skipped if it is coming from verify.
target_size = model.input_shape target_size = model.input_shape
if detector_backend != "skip": if detector_backend != "skip":
img_objs = detection.extract_faces( img_objs = detection.extract_faces(
img_path=img_path, img_path=single_img_path,
detector_backend=detector_backend, detector_backend=detector_backend,
grayscale=False, grayscale=False,
enforce_detection=enforce_detection, enforce_detection=enforce_detection,
@ -86,7 +99,7 @@ def represent(
) )
else: # skip else: # skip
# Try load. If load error, will raise exception internal # Try load. If load error, will raise exception internal
img, _ = image_utils.load_image(img_path) img, _ = image_utils.load_image(single_img_path)
if len(img.shape) != 3: if len(img.shape) != 3:
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}") raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
@ -132,8 +145,17 @@ def represent(
# custom normalization # custom normalization
img = preprocessing.normalize_input(img=img, normalization=normalization) img = preprocessing.normalize_input(img=img, normalization=normalization)
embedding = model.forward(img) batch_images.append(img)
batch_regions.append(region)
batch_confidences.append(confidence)
# Convert list of images to a numpy array for batch processing
batch_images = np.concat(batch_images)
# Forward pass through the model for the entire batch
embeddings = model.forward(batch_images)
for embedding, region, confidence in zip(embeddings, batch_regions, batch_confidences):
resp_objs.append( resp_objs.append(
{ {
"embedding": embedding, "embedding": embedding,