mirror of
https://github.com/serengil/deepface.git
synced 2025-07-23 10:20:03 +00:00
align first detect second
This commit is contained in:
parent
e529fa5c26
commit
16c72cd0f6
@ -423,7 +423,7 @@ def stream(
|
|||||||
|
|
||||||
def extract_faces(
|
def extract_faces(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
target_size: Tuple[int, int] = (224, 224),
|
target_size: Optional[Tuple[int, int]] = (224, 224),
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from typing import Any, List
|
from typing import Any, List, Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.modules import detection
|
from deepface.modules import detection
|
||||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||||
@ -106,17 +106,27 @@ def detect_faces(
|
|||||||
# expand the facial area to be extracted and stay within img.shape limits
|
# expand the facial area to be extracted and stay within img.shape limits
|
||||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
w2 = min(img.shape[1], w + int((w * 2 * expand_percentage) / 100)) # expand right
|
||||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
h2 = min(img.shape[0], h + int((h * 2 * expand_percentage) / 100)) # expand bottom
|
||||||
|
|
||||||
# extract detected face unaligned
|
# extract detected face unaligned
|
||||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||||
|
|
||||||
# align detected face
|
# aligning detected face causes a lot of black pixels
|
||||||
if align is True:
|
# if align is True:
|
||||||
detected_face = detection.align_face(
|
# detected_face, _ = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
# img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||||
|
# )
|
||||||
|
|
||||||
|
# align original image, then find projection of detected face area after alignment
|
||||||
|
if align is True: # and left_eye is not None and right_eye is not None:
|
||||||
|
aligned_img, angle = detection.align_face(
|
||||||
|
img=img, left_eye=left_eye, right_eye=right_eye
|
||||||
)
|
)
|
||||||
|
x1_new, y1_new, x2_new, y2_new = rotate_facial_area(
|
||||||
|
facial_area=(x2, y2, x2 + w2, y2 + h2), angle=angle, direction=1, size=img.shape
|
||||||
|
)
|
||||||
|
detected_face = aligned_img[int(y1_new) : int(y2_new), int(x1_new) : int(x2_new)]
|
||||||
|
|
||||||
result = DetectedFace(
|
result = DetectedFace(
|
||||||
img=detected_face,
|
img=detected_face,
|
||||||
@ -127,3 +137,45 @@ def detect_faces(
|
|||||||
)
|
)
|
||||||
results.append(result)
|
results.append(result)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def rotate_facial_area(
|
||||||
|
facial_area: Tuple[int, int, int, int], angle: float, direction: int, size: Tuple[int, int]
|
||||||
|
) -> Tuple[int, int, int, int]:
|
||||||
|
"""
|
||||||
|
Rotate the facial area around its center.
|
||||||
|
Inspried from the work of @UmutDeniz26 - github.com/serengil/retinaface/pull/80
|
||||||
|
|
||||||
|
Args:
|
||||||
|
facial_area (tuple of int): Representing the (x1, y1, x2, y2) of the facial area.
|
||||||
|
x2 is equal to x1 + w1, and y2 is equal to y1 + h1
|
||||||
|
angle (float): Angle of rotation in degrees.
|
||||||
|
direction (int): Direction of rotation (-1 for clockwise, 1 for counterclockwise).
|
||||||
|
size (tuple of int): Tuple representing the size of the image (width, height).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
rotated_coordinates (tuple of int): Representing the new coordinates
|
||||||
|
(x1, y1, x2, y2) or (x1, y1, x1+w1, y1+h1) of the rotated facial area.
|
||||||
|
"""
|
||||||
|
# Angle in radians
|
||||||
|
angle = angle * np.pi / 180
|
||||||
|
|
||||||
|
# Translate the facial area to the center of the image
|
||||||
|
x = (facial_area[0] + facial_area[2]) / 2 - size[1] / 2
|
||||||
|
y = (facial_area[1] + facial_area[3]) / 2 - size[0] / 2
|
||||||
|
|
||||||
|
# Rotate the facial area
|
||||||
|
x_new = x * np.cos(angle) + y * direction * np.sin(angle)
|
||||||
|
y_new = -x * direction * np.sin(angle) + y * np.cos(angle)
|
||||||
|
|
||||||
|
# Translate the facial area back to the original position
|
||||||
|
x_new = x_new + size[1] / 2
|
||||||
|
y_new = y_new + size[0] / 2
|
||||||
|
|
||||||
|
# Calculate the new facial area
|
||||||
|
x1 = x_new - (facial_area[2] - facial_area[0]) / 2
|
||||||
|
y1 = y_new - (facial_area[3] - facial_area[1]) / 2
|
||||||
|
x2 = x_new + (facial_area[2] - facial_area[0]) / 2
|
||||||
|
y2 = y_new + (facial_area[3] - facial_area[1]) / 2
|
||||||
|
|
||||||
|
return (int(x1), int(y1), int(x2), int(y2))
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
# built-in dependencies
|
# built-in dependencies
|
||||||
from typing import Any, Dict, List, Tuple, Union
|
from typing import Any, Dict, List, Tuple, Union, Optional
|
||||||
|
|
||||||
# 3rd part dependencies
|
# 3rd part dependencies
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -27,7 +27,7 @@ elif tf_major_version == 2:
|
|||||||
|
|
||||||
def extract_faces(
|
def extract_faces(
|
||||||
img_path: Union[str, np.ndarray],
|
img_path: Union[str, np.ndarray],
|
||||||
target_size: Tuple[int, int] = (224, 224),
|
target_size: Optional[Tuple[int, int]] = (224, 224),
|
||||||
detector_backend: str = "opencv",
|
detector_backend: str = "opencv",
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
@ -116,6 +116,7 @@ def extract_faces(
|
|||||||
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
# resize and padding
|
# resize and padding
|
||||||
|
if target_size is not None:
|
||||||
factor_0 = target_size[0] / current_img.shape[0]
|
factor_0 = target_size[0] / current_img.shape[0]
|
||||||
factor_1 = target_size[1] / current_img.shape[1]
|
factor_1 = target_size[1] / current_img.shape[1]
|
||||||
factor = min(factor_0, factor_1)
|
factor = min(factor_0, factor_1)
|
||||||
@ -189,7 +190,7 @@ def align_face(
|
|||||||
img: np.ndarray,
|
img: np.ndarray,
|
||||||
left_eye: Union[list, tuple],
|
left_eye: Union[list, tuple],
|
||||||
right_eye: Union[list, tuple],
|
right_eye: Union[list, tuple],
|
||||||
) -> np.ndarray:
|
) -> Tuple[np.ndarray, float]:
|
||||||
"""
|
"""
|
||||||
Align a given image horizantally with respect to their left and right eye locations
|
Align a given image horizantally with respect to their left and right eye locations
|
||||||
Args:
|
Args:
|
||||||
@ -201,13 +202,13 @@ def align_face(
|
|||||||
"""
|
"""
|
||||||
# if eye could not be detected for the given image, return image itself
|
# if eye could not be detected for the given image, return image itself
|
||||||
if left_eye is None or right_eye is None:
|
if left_eye is None or right_eye is None:
|
||||||
return img
|
return img, 0
|
||||||
|
|
||||||
# sometimes unexpectedly detected images come with nil dimensions
|
# sometimes unexpectedly detected images come with nil dimensions
|
||||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||||
return img
|
return img, 0
|
||||||
|
|
||||||
angle = float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
|
angle = float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
|
||||||
img = Image.fromarray(img)
|
img = Image.fromarray(img)
|
||||||
img = np.array(img.rotate(angle))
|
img = np.array(img.rotate(angle))
|
||||||
return img
|
return img, angle
|
||||||
|
BIN
tests/dataset/img11_reflection.jpg
Normal file
BIN
tests/dataset/img11_reflection.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 232 KiB |
@ -53,22 +53,36 @@ dfs = DeepFace.find(
|
|||||||
for df in dfs:
|
for df in dfs:
|
||||||
logger.info(df)
|
logger.info(df)
|
||||||
|
|
||||||
# extract faces
|
|
||||||
for detector_backend in detector_backends:
|
# img_paths = ["dataset/img11.jpg", "dataset/img11_reflection.jpg", "dataset/couple.jpg"]
|
||||||
|
img_paths = ["dataset/img11.jpg"]
|
||||||
|
for img_path in img_paths:
|
||||||
|
# extract faces
|
||||||
|
for detector_backend in detector_backends:
|
||||||
face_objs = DeepFace.extract_faces(
|
face_objs = DeepFace.extract_faces(
|
||||||
img_path="dataset/img11.jpg", detector_backend=detector_backend, align=True
|
img_path=img_path,
|
||||||
|
detector_backend=detector_backend,
|
||||||
|
align=True,
|
||||||
|
# expand_percentage=10,
|
||||||
|
# target_size=None,
|
||||||
)
|
)
|
||||||
for face_obj in face_objs:
|
for face_obj in face_objs:
|
||||||
face = face_obj["face"]
|
face = face_obj["face"]
|
||||||
logger.info(detector_backend)
|
logger.info(detector_backend)
|
||||||
logger.info(face_obj["facial_area"])
|
logger.info(face_obj["facial_area"])
|
||||||
logger.info(face_obj["confidence"])
|
logger.info(face_obj["confidence"])
|
||||||
|
|
||||||
|
# we know opencv sometimes cannot find eyes
|
||||||
|
if face_obj["facial_area"]["left_eye"] is not None:
|
||||||
assert isinstance(face_obj["facial_area"]["left_eye"], tuple)
|
assert isinstance(face_obj["facial_area"]["left_eye"], tuple)
|
||||||
assert isinstance(face_obj["facial_area"]["right_eye"], tuple)
|
|
||||||
assert isinstance(face_obj["facial_area"]["left_eye"][0], int)
|
assert isinstance(face_obj["facial_area"]["left_eye"][0], int)
|
||||||
assert isinstance(face_obj["facial_area"]["right_eye"][0], int)
|
|
||||||
assert isinstance(face_obj["facial_area"]["left_eye"][1], int)
|
assert isinstance(face_obj["facial_area"]["left_eye"][1], int)
|
||||||
|
|
||||||
|
if face_obj["facial_area"]["right_eye"] is not None:
|
||||||
|
assert isinstance(face_obj["facial_area"]["right_eye"], tuple)
|
||||||
|
assert isinstance(face_obj["facial_area"]["right_eye"][0], int)
|
||||||
assert isinstance(face_obj["facial_area"]["right_eye"][1], int)
|
assert isinstance(face_obj["facial_area"]["right_eye"][1], int)
|
||||||
|
|
||||||
assert isinstance(face_obj["confidence"], float)
|
assert isinstance(face_obj["confidence"], float)
|
||||||
plt.imshow(face)
|
plt.imshow(face)
|
||||||
plt.axis("off")
|
plt.axis("off")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user