mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 19:45:21 +00:00
list operations supported
This commit is contained in:
parent
01aa0a7a25
commit
171c1a81d7
12
README.md
12
README.md
@ -34,6 +34,16 @@ print("Is verified: ", result["verified"])
|
||||
print("Distance: ", result["distance"])
|
||||
```
|
||||
|
||||
Each call of verification function builds a face recognition model scratch and this is a costly operation. If you are going to verify multiple faces sequentially, then you should pass an array to verify function to speed up.
|
||||
|
||||
```python
|
||||
dataset = [
|
||||
['dataset/img1.jpg', 'dataset/img2.jpg'],
|
||||
['dataset/img5.jpg', 'dataset/img6.jpg']
|
||||
]
|
||||
result = DeepFace.verify(dataset)
|
||||
```
|
||||
|
||||
## Face recognition models
|
||||
|
||||
Face recognition can be handled by different models. Currently, [`VGG-Face`](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/) , [`Google Facenet`](https://sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/), [`OpenFace`](https://sefiks.com/2019/07/21/face-recognition-with-openface-in-keras/) and [`Facebook DeepFace`](https://sefiks.com/2020/02/17/face-recognition-with-facebook-deepface-in-keras/) models are supported in deepface. The default configuration verifies faces with **VGG-Face** model. You can set the base model while verification as illustared below. Accuracy and speed show difference based on the performing model.
|
||||
@ -66,6 +76,8 @@ Deepface also offers facial attribute analysis including [`age`](https://sefiks.
|
||||
from deepface import DeepFace
|
||||
demography = DeepFace.analyze("img4.jpg") #passing nothing as 2nd argument will find everything
|
||||
#demography = DeepFace.analyze("img4.jpg", ['age', 'gender', 'race', 'emotion']) #identical to the line above
|
||||
|
||||
demographies = DeepFace.analyze(["img1.jpg", "img2.jpg", "img3.jpg"])
|
||||
```
|
||||
|
||||
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/tests/dataset/test-case-1.jpg" width="20%" height="20%"></p>
|
||||
|
@ -17,23 +17,19 @@ from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||
from deepface.commons import functions, distance as dst
|
||||
|
||||
def verify(img1_path, img2_path
|
||||
def verify(img1_path, img2_path=''
|
||||
, model_name ='VGG-Face', distance_metric = 'cosine', plot = False):
|
||||
|
||||
tic = time.time()
|
||||
|
||||
if os.path.isfile(img1_path) != True:
|
||||
raise ValueError("Confirm that ",img1_path," exists")
|
||||
|
||||
if os.path.isfile(img2_path) != True:
|
||||
raise ValueError("Confirm that ",img2_path," exists")
|
||||
|
||||
#-------------------------
|
||||
|
||||
#tuned thresholds for model and metric pair
|
||||
threshold = functions.findThreshold(model_name, distance_metric)
|
||||
|
||||
#-------------------------
|
||||
if type(img1_path) == list:
|
||||
bulkProcess = True
|
||||
img_list = img1_path.copy()
|
||||
else:
|
||||
bulkProcess = False
|
||||
img_list = [[img1_path, img2_path]]
|
||||
|
||||
#------------------------------
|
||||
|
||||
if model_name == 'VGG-Face':
|
||||
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
||||
@ -57,82 +53,117 @@ def verify(img1_path, img2_path
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid model_name passed - ", model_name)
|
||||
|
||||
#-------------------------
|
||||
#crop face
|
||||
|
||||
img1 = functions.detectFace(img1_path, input_shape)
|
||||
img2 = functions.detectFace(img2_path, input_shape)
|
||||
#------------------------------
|
||||
|
||||
#-------------------------
|
||||
#find embeddings
|
||||
#tuned thresholds for model and metric pair
|
||||
threshold = functions.findThreshold(model_name, distance_metric)
|
||||
|
||||
img1_representation = model.predict(img1)[0,:]
|
||||
img2_representation = model.predict(img2)[0,:]
|
||||
#------------------------------
|
||||
resp_objects = []
|
||||
for instance in img_list:
|
||||
if type(instance) == list and len(instance) >= 2:
|
||||
img1_path = instance[0]
|
||||
img2_path = instance[1]
|
||||
|
||||
#----------------------
|
||||
|
||||
if os.path.isfile(img1_path) != True:
|
||||
raise ValueError("Confirm that ",img1_path," exists")
|
||||
|
||||
if os.path.isfile(img2_path) != True:
|
||||
raise ValueError("Confirm that ",img2_path," exists")
|
||||
|
||||
#----------------------
|
||||
#crop and align faces
|
||||
|
||||
img1 = functions.detectFace(img1_path, input_shape)
|
||||
img2 = functions.detectFace(img2_path, input_shape)
|
||||
|
||||
#----------------------
|
||||
#find embeddings
|
||||
|
||||
#-------------------------
|
||||
#find distances between embeddings
|
||||
|
||||
if distance_metric == 'cosine':
|
||||
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||
elif distance_metric == 'euclidean':
|
||||
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
||||
elif distance_metric == 'euclidean_l2':
|
||||
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
||||
else:
|
||||
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
||||
|
||||
#-------------------------
|
||||
#decision
|
||||
|
||||
if distance <= threshold:
|
||||
identified = "true"
|
||||
else:
|
||||
identified = "false"
|
||||
|
||||
#-------------------------
|
||||
|
||||
if plot:
|
||||
label = "Verified: "+identified
|
||||
label += "\nThreshold: "+str(round(distance, 2))
|
||||
label += ", Max Threshold to Verify: "+str(threshold)
|
||||
label += "\nModel: "+model_name
|
||||
label += ", Similarity metric: "+distance_metric
|
||||
img1_representation = model.predict(img1)[0,:]
|
||||
img2_representation = model.predict(img2)[0,:]
|
||||
|
||||
#----------------------
|
||||
#find distances between embeddings
|
||||
|
||||
if distance_metric == 'cosine':
|
||||
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||
elif distance_metric == 'euclidean':
|
||||
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
||||
elif distance_metric == 'euclidean_l2':
|
||||
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
||||
else:
|
||||
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
||||
|
||||
#----------------------
|
||||
#decision
|
||||
|
||||
if distance <= threshold:
|
||||
identified = "true"
|
||||
else:
|
||||
identified = "false"
|
||||
#----------------------
|
||||
if plot:
|
||||
label = "Verified: "+identified
|
||||
label += "\nThreshold: "+str(round(distance, 2))
|
||||
label += ", Max Threshold to Verify: "+str(threshold)
|
||||
label += "\nModel: "+model_name
|
||||
label += ", Similarity metric: "+distance_metric
|
||||
|
||||
fig = plt.figure()
|
||||
fig.add_subplot(1,2, 1)
|
||||
plt.imshow(img1[0][:, :, ::-1])
|
||||
plt.xticks([]); plt.yticks([])
|
||||
fig.add_subplot(1,2, 2)
|
||||
plt.imshow(img2[0][:, :, ::-1])
|
||||
plt.xticks([]); plt.yticks([])
|
||||
fig.suptitle(label, fontsize=17)
|
||||
plt.show(block=True)
|
||||
|
||||
#----------------------
|
||||
#response object
|
||||
|
||||
resp_obj = "{"
|
||||
resp_obj += "\"verified\": "+identified
|
||||
resp_obj += ", \"distance\": "+str(distance)
|
||||
resp_obj += ", \"max_threshold_to_verify\": "+str(threshold)
|
||||
resp_obj += ", \"model\": \""+model_name+"\""
|
||||
resp_obj += ", \"similarity_metric\": \""+distance_metric+"\""
|
||||
resp_obj += "}"
|
||||
|
||||
resp_obj = json.loads(resp_obj) #string to json
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_objects.append(resp_obj)
|
||||
else:
|
||||
return resp_obj
|
||||
#----------------------
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid arguments passed to verify function: ", instance)
|
||||
|
||||
fig = plt.figure()
|
||||
fig.add_subplot(1,2, 1)
|
||||
plt.imshow(img1[0][:, :, ::-1])
|
||||
plt.xticks([]); plt.yticks([])
|
||||
fig.add_subplot(1,2, 2)
|
||||
plt.imshow(img2[0][:, :, ::-1])
|
||||
plt.xticks([]); plt.yticks([])
|
||||
fig.suptitle(label, fontsize=17)
|
||||
plt.show(block=True)
|
||||
|
||||
#-------------------------
|
||||
|
||||
toc = time.time()
|
||||
|
||||
resp_obj = "{"
|
||||
resp_obj += "\"verified\": "+identified
|
||||
resp_obj += ", \"distance\": "+str(distance)
|
||||
resp_obj += ", \"max_threshold_to_verify\": "+str(threshold)
|
||||
resp_obj += ", \"model\": \""+model_name+"\""
|
||||
resp_obj += ", \"similarity_metric\": \""+distance_metric+"\""
|
||||
resp_obj += "}"
|
||||
|
||||
resp_obj = json.loads(resp_obj) #string to json
|
||||
|
||||
#print("identification lasts ",toc-tic," seconds")
|
||||
|
||||
return resp_obj
|
||||
if bulkProcess == True:
|
||||
return resp_objects
|
||||
|
||||
def analyze(img_path, actions= []):
|
||||
|
||||
if os.path.isfile(img_path) != True:
|
||||
raise ValueError("Confirm that ",img_path," exists")
|
||||
if type(img_path) == list:
|
||||
img_paths = img_path.copy()
|
||||
bulkProcess = True
|
||||
else:
|
||||
img_paths = [img_path]
|
||||
bulkProcess = False
|
||||
|
||||
resp_obj = "{"
|
||||
#---------------------------------
|
||||
|
||||
#if a specific target is not passed, then find them all
|
||||
if len(actions) == 0:
|
||||
@ -140,95 +171,123 @@ def analyze(img_path, actions= []):
|
||||
|
||||
print("Actions to do: ", actions)
|
||||
|
||||
#TO-DO: do this in parallel
|
||||
#---------------------------------
|
||||
|
||||
pbar = tqdm(range(0,len(actions)), desc='Finding actions')
|
||||
if 'emotion' in actions:
|
||||
emotion_model = Emotion.loadModel()
|
||||
|
||||
action_idx = 0
|
||||
#for action in actions:
|
||||
for index in pbar:
|
||||
action = actions[index]
|
||||
pbar.set_description("Action: %s" % (action))
|
||||
if 'age' in actions:
|
||||
age_model = Age.loadModel()
|
||||
|
||||
if 'gender' in actions:
|
||||
gender_model = Gender.loadModel()
|
||||
|
||||
if 'race' in actions:
|
||||
race_model = Race.loadModel()
|
||||
#---------------------------------
|
||||
|
||||
resp_objects = []
|
||||
for img_path in img_paths:
|
||||
|
||||
if action_idx > 0:
|
||||
resp_obj += ", "
|
||||
if type(img_path) != str:
|
||||
raise ValueError("You should pass string data type for image paths but you passed ", type(img_path))
|
||||
|
||||
if action == 'emotion':
|
||||
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||
img = functions.detectFace(img_path, (48, 48), True)
|
||||
|
||||
model = Emotion.loadModel()
|
||||
emotion_predictions = model.predict(img)[0,:]
|
||||
|
||||
sum_of_predictions = emotion_predictions.sum()
|
||||
|
||||
emotion_obj = "\"emotion\": {"
|
||||
for i in range(0, len(emotion_labels)):
|
||||
emotion_label = emotion_labels[i]
|
||||
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||
|
||||
if i > 0: emotion_obj += ", "
|
||||
|
||||
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
|
||||
|
||||
emotion_obj += "}"
|
||||
|
||||
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
|
||||
|
||||
resp_obj += emotion_obj
|
||||
|
||||
elif action == 'age':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("age prediction")
|
||||
model = Age.loadModel()
|
||||
age_predictions = model.predict(img)[0,:]
|
||||
apparent_age = Age.findApparentAge(age_predictions)
|
||||
|
||||
resp_obj += "\"age\": %s" % (apparent_age)
|
||||
|
||||
elif action == 'gender':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("gender prediction")
|
||||
|
||||
model = Gender.loadModel()
|
||||
gender_prediction = model.predict(img)[0,:]
|
||||
|
||||
if np.argmax(gender_prediction) == 0:
|
||||
gender = "Woman"
|
||||
elif np.argmax(gender_prediction) == 1:
|
||||
gender = "Man"
|
||||
|
||||
resp_obj += "\"gender\": \"%s\"" % (gender)
|
||||
|
||||
elif action == 'race':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
model = Race.loadModel()
|
||||
race_predictions = model.predict(img)[0,:]
|
||||
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||
|
||||
sum_of_predictions = race_predictions.sum()
|
||||
|
||||
race_obj = "\"race\": {"
|
||||
for i in range(0, len(race_labels)):
|
||||
race_label = race_labels[i]
|
||||
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
||||
|
||||
if i > 0: race_obj += ", "
|
||||
|
||||
race_obj += "\"%s\": %s" % (race_label, race_prediction)
|
||||
|
||||
race_obj += "}"
|
||||
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
|
||||
|
||||
resp_obj += race_obj
|
||||
if os.path.isfile(img_path) != True:
|
||||
raise ValueError("Confirm that ",img_path," exists")
|
||||
|
||||
action_idx = action_idx + 1
|
||||
resp_obj = "{"
|
||||
|
||||
#TO-DO: do this in parallel
|
||||
|
||||
pbar = tqdm(range(0,len(actions)), desc='Finding actions')
|
||||
|
||||
action_idx = 0
|
||||
#for action in actions:
|
||||
for index in pbar:
|
||||
action = actions[index]
|
||||
pbar.set_description("Action: %s" % (action))
|
||||
|
||||
if action_idx > 0:
|
||||
resp_obj += ", "
|
||||
|
||||
if action == 'emotion':
|
||||
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||
img = functions.detectFace(img_path, (48, 48), True)
|
||||
|
||||
emotion_predictions = emotion_model.predict(img)[0,:]
|
||||
|
||||
sum_of_predictions = emotion_predictions.sum()
|
||||
|
||||
emotion_obj = "\"emotion\": {"
|
||||
for i in range(0, len(emotion_labels)):
|
||||
emotion_label = emotion_labels[i]
|
||||
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||
|
||||
if i > 0: emotion_obj += ", "
|
||||
|
||||
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
|
||||
|
||||
emotion_obj += "}"
|
||||
|
||||
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
|
||||
|
||||
resp_obj += emotion_obj
|
||||
|
||||
elif action == 'age':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("age prediction")
|
||||
age_predictions = age_model.predict(img)[0,:]
|
||||
apparent_age = Age.findApparentAge(age_predictions)
|
||||
|
||||
resp_obj += "\"age\": %s" % (apparent_age)
|
||||
|
||||
elif action == 'gender':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
#print("gender prediction")
|
||||
|
||||
gender_prediction = gender_model.predict(img)[0,:]
|
||||
|
||||
if np.argmax(gender_prediction) == 0:
|
||||
gender = "Woman"
|
||||
elif np.argmax(gender_prediction) == 1:
|
||||
gender = "Man"
|
||||
|
||||
resp_obj += "\"gender\": \"%s\"" % (gender)
|
||||
|
||||
elif action == 'race':
|
||||
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
|
||||
race_predictions = race_model.predict(img)[0,:]
|
||||
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||
|
||||
sum_of_predictions = race_predictions.sum()
|
||||
|
||||
race_obj = "\"race\": {"
|
||||
for i in range(0, len(race_labels)):
|
||||
race_label = race_labels[i]
|
||||
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
||||
|
||||
if i > 0: race_obj += ", "
|
||||
|
||||
race_obj += "\"%s\": %s" % (race_label, race_prediction)
|
||||
|
||||
race_obj += "}"
|
||||
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
|
||||
|
||||
resp_obj += race_obj
|
||||
|
||||
action_idx = action_idx + 1
|
||||
|
||||
resp_obj += "}"
|
||||
|
||||
resp_obj = json.loads(resp_obj)
|
||||
|
||||
if bulkProcess == True:
|
||||
resp_objects.append(resp_obj)
|
||||
else:
|
||||
return resp_obj
|
||||
|
||||
resp_obj += "}"
|
||||
|
||||
resp_obj = json.loads(resp_obj)
|
||||
|
||||
return resp_obj
|
||||
if bulkProcess == True:
|
||||
return resp_objects
|
||||
|
||||
def detectFace(img_path):
|
||||
img = functions.detectFace(img_path)[0] #detectFace returns (1, 224, 224, 3)
|
||||
|
@ -5,6 +5,43 @@ import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
#-----------------------------------------
|
||||
|
||||
print("Bulk tests")
|
||||
|
||||
print("-----------------------------------------")
|
||||
|
||||
print("Bulk face recognition tests")
|
||||
|
||||
dataset = [
|
||||
['dataset/img1.jpg', 'dataset/img2.jpg', True],
|
||||
['dataset/img5.jpg', 'dataset/img6.jpg', True]
|
||||
]
|
||||
|
||||
resp_obj = DeepFace.verify(dataset)
|
||||
print(resp_obj[0]["verified"] == True)
|
||||
print(resp_obj[1]["verified"] == True)
|
||||
|
||||
print("-----------------------------------------")
|
||||
|
||||
print("Bulk facial analysis tests")
|
||||
|
||||
dataset = [
|
||||
'dataset/img1.jpg',
|
||||
'dataset/img2.jpg',
|
||||
'dataset/img5.jpg',
|
||||
'dataset/img6.jpg'
|
||||
]
|
||||
|
||||
resp_obj = DeepFace.analyze(dataset)
|
||||
print(resp_obj[0]["age"]," years old ", resp_obj[0]["dominant_emotion"], " ",resp_obj[0]["gender"])
|
||||
print(resp_obj[1]["age"]," years old ", resp_obj[1]["dominant_emotion"], " ",resp_obj[1]["gender"])
|
||||
print(resp_obj[2]["age"]," years old ", resp_obj[2]["dominant_emotion"], " ",resp_obj[2]["gender"])
|
||||
print(resp_obj[3]["age"]," years old ", resp_obj[3]["dominant_emotion"], " ",resp_obj[3]["gender"])
|
||||
|
||||
|
||||
print("-----------------------------------------")
|
||||
|
||||
#-----------------------------------------
|
||||
|
||||
print("Facial analysis test. Passing nothing as an action")
|
||||
|
||||
img = "dataset/img4.jpg"
|
||||
|
Loading…
x
Reference in New Issue
Block a user