mirror of
https://github.com/serengil/deepface.git
synced 2025-07-23 10:20:03 +00:00
stream function
This commit is contained in:
parent
b91d2803f2
commit
1af71925a2
@ -8,14 +8,15 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import json
|
import json
|
||||||
|
import cv2
|
||||||
|
|
||||||
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||||
#from extendedmodels import Age, Gender, Race, Emotion
|
#from extendedmodels import Age, Gender, Race, Emotion
|
||||||
#from commons import functions, distance as dst
|
#from commons import functions, realtime, distance as dst
|
||||||
|
|
||||||
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||||
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||||
from deepface.commons import functions, distance as dst
|
from deepface.commons import functions, realtime, distance as dst
|
||||||
|
|
||||||
def verify(img1_path, img2_path=''
|
def verify(img1_path, img2_path=''
|
||||||
, model_name ='VGG-Face', distance_metric = 'cosine', plot = False):
|
, model_name ='VGG-Face', distance_metric = 'cosine', plot = False):
|
||||||
@ -293,8 +294,12 @@ def detectFace(img_path):
|
|||||||
img = functions.detectFace(img_path)[0] #detectFace returns (1, 224, 224, 3)
|
img = functions.detectFace(img_path)[0] #detectFace returns (1, 224, 224, 3)
|
||||||
return img[:, :, ::-1] #bgr to rgb
|
return img[:, :, ::-1] #bgr to rgb
|
||||||
|
|
||||||
|
def stream(db_path, model_name ='VGG-Face', distance_metric = 'cosine', enable_face_analysis = True):
|
||||||
|
realtime.analysis(db_path, model_name, distance_metric, enable_face_analysis)
|
||||||
|
|
||||||
#---------------------------
|
#---------------------------
|
||||||
|
|
||||||
functions.initializeFolder()
|
functions.initializeFolder()
|
||||||
|
|
||||||
#---------------------------
|
#---------------------------
|
||||||
|
|
||||||
|
@ -11,6 +11,7 @@ import gdown
|
|||||||
import hashlib
|
import hashlib
|
||||||
import math
|
import math
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
import copy
|
||||||
|
|
||||||
def distance(a, b):
|
def distance(a, b):
|
||||||
x1 = a[0]; y1 = a[1]
|
x1 = a[0]; y1 = a[1]
|
||||||
@ -108,8 +109,7 @@ def findThreshold(model_name, distance_metric):
|
|||||||
|
|
||||||
return threshold
|
return threshold
|
||||||
|
|
||||||
def detectFace(image_path, target_size=(224, 224), grayscale = False):
|
def get_opencv_path():
|
||||||
|
|
||||||
opencv_home = cv2.__file__
|
opencv_home = cv2.__file__
|
||||||
folders = opencv_home.split(os.path.sep)[0:-1]
|
folders = opencv_home.split(os.path.sep)[0:-1]
|
||||||
|
|
||||||
@ -120,6 +120,25 @@ def detectFace(image_path, target_size=(224, 224), grayscale = False):
|
|||||||
face_detector_path = path+"/data/haarcascade_frontalface_default.xml"
|
face_detector_path = path+"/data/haarcascade_frontalface_default.xml"
|
||||||
eye_detector_path = path+"/data/haarcascade_eye.xml"
|
eye_detector_path = path+"/data/haarcascade_eye.xml"
|
||||||
|
|
||||||
|
if os.path.isfile(face_detector_path) != True:
|
||||||
|
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
|
||||||
|
|
||||||
|
return path+"/data/"
|
||||||
|
|
||||||
|
def detectFace(img, target_size=(224, 224), grayscale = False):
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
|
||||||
|
exact_image = False
|
||||||
|
if type(img).__module__ == np.__name__:
|
||||||
|
exact_image = True
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
|
||||||
|
opencv_path = get_opencv_path()
|
||||||
|
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
|
||||||
|
eye_detector_path = opencv_path+"haarcascade_eye.xml"
|
||||||
|
|
||||||
if os.path.isfile(face_detector_path) != True:
|
if os.path.isfile(face_detector_path) != True:
|
||||||
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
|
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
|
||||||
|
|
||||||
@ -128,7 +147,8 @@ def detectFace(image_path, target_size=(224, 224), grayscale = False):
|
|||||||
face_detector = cv2.CascadeClassifier(face_detector_path)
|
face_detector = cv2.CascadeClassifier(face_detector_path)
|
||||||
eye_detector = cv2.CascadeClassifier(eye_detector_path)
|
eye_detector = cv2.CascadeClassifier(eye_detector_path)
|
||||||
|
|
||||||
img = cv2.imread(image_path)
|
if exact_image != True: #image path passed as input
|
||||||
|
img = cv2.imread(img)
|
||||||
|
|
||||||
img_raw = img.copy()
|
img_raw = img.copy()
|
||||||
|
|
||||||
@ -241,4 +261,16 @@ def detectFace(image_path, target_size=(224, 224), grayscale = False):
|
|||||||
return img_pixels
|
return img_pixels
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError("Face could not be detected in ", image_path,". Please confirm that the picture is a face photo.")
|
|
||||||
|
if exact_image == True:
|
||||||
|
|
||||||
|
if grayscale == True:
|
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
img = cv2.resize(img, target_size)
|
||||||
|
img_pixels = image.img_to_array(img)
|
||||||
|
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
||||||
|
img_pixels /= 255
|
||||||
|
return img_pixels
|
||||||
|
else:
|
||||||
|
raise ValueError("Face could not be detected in ", img,". Please confirm that the picture is a face photo.")
|
387
deepface/commons/realtime.py
Normal file
387
deepface/commons/realtime.py
Normal file
@ -0,0 +1,387 @@
|
|||||||
|
import os
|
||||||
|
from tqdm import tqdm
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import cv2
|
||||||
|
import time
|
||||||
|
|
||||||
|
import os
|
||||||
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
|
||||||
|
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||||
|
#from extendedmodels import Age, Gender, Race, Emotion
|
||||||
|
#from commons import functions, realtime, distance as dst
|
||||||
|
|
||||||
|
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
|
||||||
|
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
||||||
|
from deepface.commons import functions, realtime, distance as dst
|
||||||
|
|
||||||
|
def analysis(db_path, model_name, distance_metric, enable_face_analysis = True):
|
||||||
|
|
||||||
|
input_shape = (224, 224)
|
||||||
|
text_color = (255,255,255)
|
||||||
|
|
||||||
|
employees = []
|
||||||
|
#check passed db folder exists
|
||||||
|
if os.path.isdir(db_path) == True:
|
||||||
|
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
||||||
|
for file in f:
|
||||||
|
if ('.jpg' in file):
|
||||||
|
employees.append(file)
|
||||||
|
|
||||||
|
#------------------------
|
||||||
|
|
||||||
|
if len(employees) > 0:
|
||||||
|
if model_name == 'VGG-Face':
|
||||||
|
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
||||||
|
model = VGGFace.loadModel()
|
||||||
|
input_shape = (224, 224)
|
||||||
|
|
||||||
|
elif model_name == 'OpenFace':
|
||||||
|
print("Using OpenFace model backend", distance_metric,"distance.")
|
||||||
|
model = OpenFace.loadModel()
|
||||||
|
input_shape = (96, 96)
|
||||||
|
|
||||||
|
elif model_name == 'Facenet':
|
||||||
|
print("Using Facenet model backend", distance_metric,"distance.")
|
||||||
|
model = Facenet.loadModel()
|
||||||
|
input_shape = (160, 160)
|
||||||
|
|
||||||
|
elif model_name == 'DeepFace':
|
||||||
|
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
||||||
|
model = FbDeepFace.loadModel()
|
||||||
|
input_shape = (152, 152)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid model_name passed - ", model_name)
|
||||||
|
#------------------------
|
||||||
|
|
||||||
|
#tuned thresholds for model and metric pair
|
||||||
|
threshold = functions.findThreshold(model_name, distance_metric)
|
||||||
|
|
||||||
|
#------------------------
|
||||||
|
#facial attribute analysis models
|
||||||
|
|
||||||
|
if enable_face_analysis == True:
|
||||||
|
|
||||||
|
tic = time.time()
|
||||||
|
|
||||||
|
#emotion_model = Emotion.loadModel()
|
||||||
|
#print("Emotion model loaded")
|
||||||
|
|
||||||
|
age_model = Age.loadModel()
|
||||||
|
print("Age model loaded")
|
||||||
|
|
||||||
|
gender_model = Gender.loadModel()
|
||||||
|
print("Gender model loaded")
|
||||||
|
|
||||||
|
toc = time.time()
|
||||||
|
|
||||||
|
print("Facial attibute analysis models loaded in ",toc-tic," seconds")
|
||||||
|
|
||||||
|
#------------------------
|
||||||
|
|
||||||
|
#find embeddings for employee list
|
||||||
|
|
||||||
|
tic = time.time()
|
||||||
|
|
||||||
|
pbar = tqdm(range(0, len(employees)), desc='Finding embeddings')
|
||||||
|
|
||||||
|
embeddings = []
|
||||||
|
#for employee in employees:
|
||||||
|
for index in pbar:
|
||||||
|
employee = employees[index]
|
||||||
|
pbar.set_description("Finding embedding for %s" % (employee))
|
||||||
|
embedding = []
|
||||||
|
img = functions.detectFace(db_path+"/"+employee, input_shape)
|
||||||
|
img_representation = model.predict(img)[0,:]
|
||||||
|
|
||||||
|
embedding.append(employee)
|
||||||
|
embedding.append(img_representation)
|
||||||
|
embeddings.append(embedding)
|
||||||
|
|
||||||
|
df = pd.DataFrame(embeddings, columns = ['employee', 'embedding'])
|
||||||
|
df['distance_metric'] = distance_metric
|
||||||
|
|
||||||
|
toc = time.time()
|
||||||
|
|
||||||
|
print("Embeddings found for given data set in ", toc-tic," seconds")
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
|
||||||
|
time_threshold = 5; frame_threshold = 5
|
||||||
|
pivot_img_size = 112 #face recognition result image
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
|
||||||
|
opencv_path = functions.get_opencv_path()
|
||||||
|
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
|
||||||
|
face_cascade = cv2.CascadeClassifier(face_detector_path)
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
|
||||||
|
freeze = False
|
||||||
|
face_detected = False
|
||||||
|
face_included_frames = 0 #freeze screen if face detected sequantially 5 frames
|
||||||
|
freezed_frame = 0
|
||||||
|
tic = time.time()
|
||||||
|
|
||||||
|
cap = cv2.VideoCapture(0) #webcam
|
||||||
|
|
||||||
|
while(True):
|
||||||
|
ret, img = cap.read()
|
||||||
|
|
||||||
|
#cv2.namedWindow('img', cv2.WINDOW_FREERATIO)
|
||||||
|
#cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
|
||||||
|
|
||||||
|
raw_img = img.copy()
|
||||||
|
resolution = img.shape
|
||||||
|
|
||||||
|
resolution_x = img.shape[1]; resolution_y = img.shape[0]
|
||||||
|
|
||||||
|
if freeze == False:
|
||||||
|
faces = face_cascade.detectMultiScale(img, 1.3, 5)
|
||||||
|
|
||||||
|
if len(faces) == 0:
|
||||||
|
face_included_frames = 0
|
||||||
|
else:
|
||||||
|
faces = []
|
||||||
|
|
||||||
|
detected_faces = []
|
||||||
|
face_index = 0
|
||||||
|
for (x,y,w,h) in faces:
|
||||||
|
if w > 130: #discard small detected faces
|
||||||
|
|
||||||
|
face_detected = True
|
||||||
|
if face_index == 0:
|
||||||
|
face_included_frames = face_included_frames + 1 #increase frame for a single face
|
||||||
|
|
||||||
|
cv2.rectangle(img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image
|
||||||
|
|
||||||
|
cv2.putText(img, str(frame_threshold - face_included_frames), (int(x+w/4),int(y+h/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2)
|
||||||
|
|
||||||
|
detected_face = img[int(y):int(y+h), int(x):int(x+w)] #crop detected face
|
||||||
|
|
||||||
|
#-------------------------------------
|
||||||
|
|
||||||
|
detected_faces.append((x,y,w,h))
|
||||||
|
face_index = face_index + 1
|
||||||
|
|
||||||
|
#-------------------------------------
|
||||||
|
|
||||||
|
if face_detected == True and face_included_frames == frame_threshold and freeze == False:
|
||||||
|
freeze = True
|
||||||
|
#base_img = img.copy()
|
||||||
|
base_img = raw_img.copy()
|
||||||
|
detected_faces_final = detected_faces.copy()
|
||||||
|
tic = time.time()
|
||||||
|
|
||||||
|
if freeze == True:
|
||||||
|
|
||||||
|
toc = time.time()
|
||||||
|
if (toc - tic) < time_threshold:
|
||||||
|
|
||||||
|
if freezed_frame == 0:
|
||||||
|
freeze_img = base_img.copy()
|
||||||
|
#freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue
|
||||||
|
|
||||||
|
for detected_face in detected_faces_final:
|
||||||
|
x = detected_face[0]; y = detected_face[1]
|
||||||
|
w = detected_face[2]; h = detected_face[3]
|
||||||
|
|
||||||
|
cv2.rectangle(freeze_img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
|
||||||
|
#apply deep learning for custom_face
|
||||||
|
|
||||||
|
custom_face = base_img[y:y+h, x:x+w]
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
#facial attribute analysis
|
||||||
|
|
||||||
|
if enable_face_analysis == True:
|
||||||
|
|
||||||
|
"""
|
||||||
|
gray_img = functions.detectFace(custom_face, (48, 48), True)
|
||||||
|
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
||||||
|
emotion_predictions = emotion_model.predict(gray_img)[0,:]
|
||||||
|
sum_of_predictions = emotion_predictions.sum()
|
||||||
|
|
||||||
|
mood_items = []
|
||||||
|
for i in range(0, len(emotion_labels)):
|
||||||
|
mood_item = []
|
||||||
|
emotion_label = emotion_labels[i]
|
||||||
|
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||||
|
mood_item.append(emotion_label)
|
||||||
|
mood_item.append(emotion_prediction)
|
||||||
|
mood_items.append(mood_item)
|
||||||
|
|
||||||
|
emotion_df = pd.DataFrame(mood_items, columns = ["emotion", "score"])
|
||||||
|
emotion_df = emotion_df.sort_values(by = ["score"], ascending=False)
|
||||||
|
dominant_emotion = emotion_df.iloc[0].emotion
|
||||||
|
emotion_score = emotion_df.iloc[0].score
|
||||||
|
"""
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
|
||||||
|
face_224 = functions.detectFace(custom_face, (224, 224), False)
|
||||||
|
|
||||||
|
age_predictions = age_model.predict(face_224)[0,:]
|
||||||
|
apparent_age = Age.findApparentAge(age_predictions)
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
|
||||||
|
gender_prediction = gender_model.predict(face_224)[0,:]
|
||||||
|
|
||||||
|
if np.argmax(gender_prediction) == 0:
|
||||||
|
gender = "W"
|
||||||
|
elif np.argmax(gender_prediction) == 1:
|
||||||
|
gender = "M"
|
||||||
|
|
||||||
|
#print(str(int(apparent_age))," years old ", dominant_emotion, " ", gender)
|
||||||
|
|
||||||
|
analysis_report = str(int(apparent_age))+" "+gender
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
|
||||||
|
info_box_color = (46,200,255)
|
||||||
|
|
||||||
|
#top
|
||||||
|
if y - pivot_img_size + int(pivot_img_size/5) > 0:
|
||||||
|
|
||||||
|
triangle_coordinates = np.array( [
|
||||||
|
(x+int(w/2), y)
|
||||||
|
, (x+int(w/2)-int(w/10), y-int(pivot_img_size/3))
|
||||||
|
, (x+int(w/2)+int(w/10), y-int(pivot_img_size/3))
|
||||||
|
] )
|
||||||
|
|
||||||
|
cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1)
|
||||||
|
|
||||||
|
cv2.rectangle(freeze_img, (x+int(w/5), y-pivot_img_size+int(pivot_img_size/5)), (x+w-int(w/5), y-int(pivot_img_size/3)), info_box_color, cv2.FILLED)
|
||||||
|
|
||||||
|
cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y - int(pivot_img_size/2.1)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2)
|
||||||
|
|
||||||
|
#bottom
|
||||||
|
elif y + h + pivot_img_size - int(pivot_img_size/5) < resolution_y:
|
||||||
|
|
||||||
|
triangle_coordinates = np.array( [
|
||||||
|
(x+int(w/2), y+h)
|
||||||
|
, (x+int(w/2)-int(w/10), y+h+int(pivot_img_size/3))
|
||||||
|
, (x+int(w/2)+int(w/10), y+h+int(pivot_img_size/3))
|
||||||
|
] )
|
||||||
|
|
||||||
|
cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1)
|
||||||
|
|
||||||
|
cv2.rectangle(freeze_img, (x+int(w/5), y + h + int(pivot_img_size/3)), (x+w-int(w/5), y+h+pivot_img_size-int(pivot_img_size/5)), info_box_color, cv2.FILLED)
|
||||||
|
|
||||||
|
cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y + h + int(pivot_img_size/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2)
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
#face recognition
|
||||||
|
|
||||||
|
custom_face = functions.detectFace(custom_face, input_shape)
|
||||||
|
|
||||||
|
#check detectFace function handled
|
||||||
|
if custom_face.shape[1:3] == input_shape:
|
||||||
|
if df.shape[0] > 0: #if there are images to verify, apply face recognition
|
||||||
|
img1_representation = model.predict(custom_face)[0,:]
|
||||||
|
|
||||||
|
#print(freezed_frame," - ",img1_representation[0:5])
|
||||||
|
|
||||||
|
def findDistance(row):
|
||||||
|
distance_metric = row['distance_metric']
|
||||||
|
img2_representation = row['embedding']
|
||||||
|
|
||||||
|
distance = 1000 #initialize very large value
|
||||||
|
if distance_metric == 'cosine':
|
||||||
|
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||||
|
elif distance_metric == 'euclidean':
|
||||||
|
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
||||||
|
elif distance_metric == 'euclidean_l2':
|
||||||
|
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
||||||
|
|
||||||
|
return distance
|
||||||
|
|
||||||
|
df['distance'] = df.apply(findDistance, axis = 1)
|
||||||
|
df = df.sort_values(by = ["distance"])
|
||||||
|
|
||||||
|
candidate = df.iloc[0]
|
||||||
|
employee_name = candidate['employee']
|
||||||
|
best_distance = candidate['distance']
|
||||||
|
#employee_name = employee_name.replace("_", "")
|
||||||
|
|
||||||
|
if best_distance <= threshold:
|
||||||
|
#print(employee_name)
|
||||||
|
display_img = cv2.imread("%s/%s" % (db_path, employee_name))
|
||||||
|
|
||||||
|
display_img = cv2.resize(display_img, (pivot_img_size, pivot_img_size))
|
||||||
|
|
||||||
|
label = employee_name.replace("_", "").replace(".jpg", "")+" ("+"{0:.2f}".format(best_distance)+")"
|
||||||
|
|
||||||
|
try:
|
||||||
|
if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x:
|
||||||
|
#top right
|
||||||
|
freeze_img[y - pivot_img_size:y, x+w:x+w+pivot_img_size] = display_img
|
||||||
|
cv2.putText(freeze_img, label, (x+w, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
||||||
|
|
||||||
|
#connect face and text
|
||||||
|
cv2.line(freeze_img,(x+int(w/2), y), (x+3*int(w/4), y-int(pivot_img_size/2)),(67,67,67),1)
|
||||||
|
cv2.line(freeze_img, (x+3*int(w/4), y-int(pivot_img_size/2)), (x+w, y - int(pivot_img_size/2)), (67,67,67),1)
|
||||||
|
|
||||||
|
elif y + h + pivot_img_size < resolution_y and x - pivot_img_size > 0:
|
||||||
|
#bottom left
|
||||||
|
freeze_img[y+h:y+h+pivot_img_size, x-pivot_img_size:x] = display_img
|
||||||
|
cv2.putText(freeze_img, label, (x - pivot_img_size, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
||||||
|
|
||||||
|
#connect face and text
|
||||||
|
cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1)
|
||||||
|
cv2.line(freeze_img, (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)), (x, y+h+int(pivot_img_size/2)), (67,67,67),1)
|
||||||
|
|
||||||
|
elif y - pivot_img_size > 0 and x - pivot_img_size > 0:
|
||||||
|
#top left
|
||||||
|
freeze_img[y-pivot_img_size:y, x-pivot_img_size:x] = display_img
|
||||||
|
cv2.putText(freeze_img, label, (x - pivot_img_size, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
||||||
|
|
||||||
|
#connect face and text
|
||||||
|
cv2.line(freeze_img,(x+int(w/2), y), (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)),(67,67,67),1)
|
||||||
|
cv2.line(freeze_img, (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)), (x, y - int(pivot_img_size/2)), (67,67,67),1)
|
||||||
|
|
||||||
|
elif x+w+pivot_img_size < resolution_x and y + h + pivot_img_size < resolution_y:
|
||||||
|
#bottom righ
|
||||||
|
freeze_img[y+h:y+h+pivot_img_size, x+w:x+w+pivot_img_size] = display_img
|
||||||
|
cv2.putText(freeze_img, label, (x+w, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
||||||
|
|
||||||
|
#connect face and text
|
||||||
|
cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1)
|
||||||
|
cv2.line(freeze_img, (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)), (x+w, y+h+int(pivot_img_size/2)), (67,67,67),1)
|
||||||
|
except Exception as err:
|
||||||
|
print(str(err))
|
||||||
|
|
||||||
|
tic = time.time() #in this way, freezed image can show 5 seconds
|
||||||
|
|
||||||
|
#-------------------------------
|
||||||
|
|
||||||
|
time_left = int(time_threshold - (toc - tic) + 1)
|
||||||
|
|
||||||
|
cv2.rectangle(freeze_img, (10, 10), (90, 50), (67,67,67), -10)
|
||||||
|
cv2.putText(freeze_img, str(time_left), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
|
||||||
|
|
||||||
|
cv2.imshow('img', freeze_img)
|
||||||
|
|
||||||
|
freezed_frame = freezed_frame + 1
|
||||||
|
else:
|
||||||
|
face_detected = False
|
||||||
|
face_included_frames = 0
|
||||||
|
freeze = False
|
||||||
|
freezed_frame = 0
|
||||||
|
|
||||||
|
else:
|
||||||
|
cv2.imshow('img',img)
|
||||||
|
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord('q'): #press q to quit
|
||||||
|
break
|
||||||
|
|
||||||
|
#kill open cv things
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
Loading…
x
Reference in New Issue
Block a user