diff --git a/README.md b/README.md index 9e59f40..a0cd133 100644 --- a/README.md +++ b/README.md @@ -313,18 +313,6 @@ $ deepface analyze -img_path tests/dataset/img1.jpg You can also run these commands if you are running deepface with docker. Please follow the instructions in the [shell script](https://github.com/serengil/deepface/blob/master/scripts/dockerize.sh#L17). -## Derived applications - -You can use deepface not just for facial recognition tasks. It's very common to use DeepFace for entertainment purposes. For instance, celebrity look-alike prediction and parental look-alike prediction tasks can be done with DeepFace! - -**Parental Look-Alike Prediction** - [`Vlog`](https://youtu.be/nza4tmi9vhE), [`Tutorial`](https://sefiks.com/2022/12/22/decide-whom-your-child-looks-like-with-facial-recognition-mommy-or-daddy/) - -

- -**Celebrity Look-Alike Prediction** - [`Vlog`](https://youtu.be/jaxkEn-Kieo), [`Tutorial`](https://sefiks.com/2019/05/05/celebrity-look-alike-face-recognition-with-deep-learning-in-keras/) - -

- ## Contribution [![Tests](https://github.com/serengil/deepface/actions/workflows/tests.yml/badge.svg)](https://github.com/serengil/deepface/actions/workflows/tests.yml) Pull requests are more than welcome! You should run the unit tests locally by running [`test/unit_tests.py`](https://github.com/serengil/deepface/blob/master/tests/unit_tests.py) before creating a PR. Once a PR sent, GitHub test workflow will be run automatically and unit test results will be available in [GitHub actions](https://github.com/serengil/deepface/actions) before approval. Besides, workflow will evaluate the code with pylint as well. diff --git a/deepface/commons/functions.py b/deepface/commons/functions.py index 562e816..11eb2d8 100644 --- a/deepface/commons/functions.py +++ b/deepface/commons/functions.py @@ -36,13 +36,15 @@ def initialize_folder(): OSError: if the folder cannot be created. """ home = get_deepface_home() + deepFaceHomePath = home + "/.deepface" + weightsPath = deepFaceHomePath + "/weights" - if not os.path.exists(home + "/.deepface"): - os.makedirs(home + "/.deepface") + if not os.path.exists(deepFaceHomePath): + os.makedirs(deepFaceHomePath, exist_ok=True) print("Directory ", home, "/.deepface created") - if not os.path.exists(home + "/.deepface/weights"): - os.makedirs(home + "/.deepface/weights") + if not os.path.exists(weightsPath): + os.makedirs(weightsPath, exist_ok=True) print("Directory ", home, "/.deepface/weights created") diff --git a/deepface/detectors/MediapipeWrapper.py b/deepface/detectors/MediapipeWrapper.py index 74cffff..5753485 100644 --- a/deepface/detectors/MediapipeWrapper.py +++ b/deepface/detectors/MediapipeWrapper.py @@ -19,35 +19,37 @@ def detect_face(face_detector, img, align=True): results = face_detector.process(img) - if results.detections: - for detection in results.detections: + # If no face has been detected, return an empty list + if results.detections is None: + return resp - (confidence,) = detection.score + # Extract the bounding box, the landmarks and the confidence score + for detection in results.detections: + (confidence,) = detection.score - bounding_box = detection.location_data.relative_bounding_box - landmarks = detection.location_data.relative_keypoints + bounding_box = detection.location_data.relative_bounding_box + landmarks = detection.location_data.relative_keypoints - x = int(bounding_box.xmin * img_width) - w = int(bounding_box.width * img_width) - y = int(bounding_box.ymin * img_height) - h = int(bounding_box.height * img_height) + x = int(bounding_box.xmin * img_width) + w = int(bounding_box.width * img_width) + y = int(bounding_box.ymin * img_height) + h = int(bounding_box.height * img_height) - right_eye = (int(landmarks[0].x * img_width), int(landmarks[0].y * img_height)) - left_eye = (int(landmarks[1].x * img_width), int(landmarks[1].y * img_height)) - # nose = (int(landmarks[2].x * img_width), int(landmarks[2].y * img_height)) - # mouth = (int(landmarks[3].x * img_width), int(landmarks[3].y * img_height)) - # right_ear = (int(landmarks[4].x * img_width), int(landmarks[4].y * img_height)) - # left_ear = (int(landmarks[5].x * img_width), int(landmarks[5].y * img_height)) + # Extract landmarks + left_eye = (int(landmarks[0].x * img_width), int(landmarks[0].y * img_height)) + right_eye = (int(landmarks[1].x * img_width), int(landmarks[1].y * img_height)) + # nose = (int(landmarks[2].x * img_width), int(landmarks[2].y * img_height)) + # mouth = (int(landmarks[3].x * img_width), int(landmarks[3].y * img_height)) + # right_ear = (int(landmarks[4].x * img_width), int(landmarks[4].y * img_height)) + # left_ear = (int(landmarks[5].x * img_width), int(landmarks[5].y * img_height)) - if x > 0 and y > 0: - detected_face = img[y : y + h, x : x + w] - img_region = [x, y, w, h] + if x > 0 and y > 0: + detected_face = img[y : y + h, x : x + w] + img_region = [x, y, w, h] - if align: - detected_face = FaceDetector.alignment_procedure( - detected_face, left_eye, right_eye - ) + if align: + detected_face = FaceDetector.alignment_procedure(detected_face, left_eye, right_eye) - resp.append((detected_face, img_region, confidence)) + resp.append((detected_face, img_region, confidence)) return resp