some improvements

- loading image from url was loading as rgb instead of bar
- we are returning image name in load image function to throw
meaningful message for no face found case
- we started to use imread again, and throw exception if file
name contains non English character
- get rid of the duplicate if statement in extract faces
This commit is contained in:
Sefik Ilkin Serengil 2023-12-08 22:18:52 +00:00
parent 76a6bce824
commit 2cc5f39853

View File

@ -16,6 +16,8 @@ from deepface.commons.logger import Logger
logger = Logger(module="commons.functions")
# pylint: disable=no-else-raise
# --------------------------------------------------
# configurations of dependencies
@ -73,49 +75,52 @@ def loadBase64Img(uri):
"""
encoded_data = uri.split(",")[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
return img_bgr
def load_image(img):
"""Load image from path, url, base64 or numpy array.
"""
Load image from path, url, base64 or numpy array.
Args:
img: a path, url, base64 or numpy array.
Raises:
ValueError: if the image path does not exist.
Returns:
numpy array: the loaded image.
image (numpy array): the loaded image in BGR format
image name (str): image name itself
"""
# The image is already a numpy array
if type(img).__module__ == np.__name__:
return img
return img, None
# The image is a base64 string
if img.startswith("data:image/"):
return loadBase64Img(img)
return loadBase64Img(img), None
# The image is a url
if img.startswith("http"):
return np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("RGB"))[
return (
np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("BGR"))[
:, :, ::-1
]
],
# return url as image name
img,
)
# The image is a path
if os.path.isfile(img) is not True:
raise ValueError(f"Confirm that {img} exists")
# For reading images with unicode names
with open(img, "rb") as img_f:
chunk = img_f.read()
chunk_arr = np.frombuffer(chunk, dtype=np.uint8)
img = cv2.imdecode(chunk_arr, cv2.IMREAD_COLOR)
return img
# image must be a file on the system then
# This causes troubles when reading files with non english names
# return cv2.imread(img)
# image name must have english characters
if img.isascii() is False:
raise ValueError(f"Input image must not have non-english characters - {img}")
img_obj_bgr = cv2.imread(img)
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
return img_obj_bgr, img
# --------------------------------------------------
@ -152,7 +157,7 @@ def extract_faces(
extracted_faces = []
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img = load_image(img)
img, img_name = load_image(img)
img_region = [0, 0, img.shape[1], img.shape[0]]
if detector_backend == "skip":
@ -163,9 +168,16 @@ def extract_faces(
# in case of no face found
if len(face_objs) == 0 and enforce_detection is True:
if img_name is not None:
raise ValueError(
f"Face could not be detected in {img_name}."
"Please confirm that the picture is a face photo "
"or consider to set enforce_detection param to False."
)
else:
raise ValueError(
"Face could not be detected. Please confirm that the picture is a face photo "
+ "or consider to set enforce_detection param to False."
"or consider to set enforce_detection param to False."
)
if len(face_objs) == 0 and enforce_detection is False:
@ -177,7 +189,6 @@ def extract_faces(
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
# resize and padding
if current_img.shape[0] > 0 and current_img.shape[1] > 0:
factor_0 = target_size[0] / current_img.shape[0]
factor_1 = target_size[1] / current_img.shape[1]
factor = min(factor_0, factor_1)