diff --git a/deepface/models/facial_recognition/Buffalo_L.py b/deepface/models/facial_recognition/Buffalo_L.py index c1a1bcb..9b6b8d2 100644 --- a/deepface/models/facial_recognition/Buffalo_L.py +++ b/deepface/models/facial_recognition/Buffalo_L.py @@ -10,7 +10,7 @@ try: from insightface.model_zoo import get_model except ModuleNotFoundError as err: raise ModuleNotFoundError( - "InsightFace is an optional dependency for the Buffalo_L model." + "InsightFace is an optional dependency for the Buffalo_L model. " "You can install it with: pip install insightface>=0.7.3" ) from err @@ -18,21 +18,43 @@ class Buffalo_L(FacialRecognition): def __init__(self): self.model = None self.input_shape = (112, 112) # Buffalo_L expects 112x112 - self.output_shape = 512 # Embedding size + self.output_shape = 512 # Embedding size self.load_model() def load_model(self): """ Load the InsightFace Buffalo_L recognition model. """ - # Use DeepFace's utility to download weights if necessary - model_rel_path = os.path.join("insightface", "buffalo_l", "w600k_r50.onnx") + # Define the model filename and subdirectory + sub_dir = "buffalo_l" + model_file = "w600k_r50.onnx" + model_rel_path = os.path.join(sub_dir, model_file) + + # Define the weights directory and ensure the buffalo_l subdirectory exists + weights_dir = os.path.join(os.path.expanduser("~"), ".deepface", "weights") + buffalo_l_dir = os.path.join(weights_dir, sub_dir) + if not os.path.exists(buffalo_l_dir): + os.makedirs(buffalo_l_dir, exist_ok=True) + print("Created directory:", buffalo_l_dir) + + # Download the model weights if not already present weights_path = weight_utils.download_weights_if_necessary( - file_name="webface_r50.onnx", + file_name=model_rel_path, source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" ) - # Load model from weights folder - self.model = get_model("buffalo_l/w600k_r50.onnx", root=os.path.dirname(weights_path)) + print("Downloaded model path:", weights_path) + + # Verify that the model file exists at the expected location + expected_model_path = os.path.join(buffalo_l_dir, model_file) + if os.path.exists(expected_model_path): + print("Model file found at expected location:", expected_model_path) + else: + print("Model file NOT found at expected location:", expected_model_path) + + # Use the full absolute path for loading the model + full_model_path = os.path.join(buffalo_l_dir, model_file) + print("Full model path:", full_model_path) + self.model = get_model(full_model_path) self.model.prepare(ctx_id=-1, input_size=self.input_shape) def preprocess(self, img: np.ndarray) -> np.ndarray: @@ -47,7 +69,7 @@ class Buffalo_L(FacialRecognition): img = img[0] # Remove batch dimension if img.max() <= 1.0: # If normalized to [0, 1] img = (img * 255).astype(np.uint8) - # Always convert RGB to BGR (DeepFace outputs RGB, InsightFace expects BGR) + # Convert RGB to BGR (DeepFace outputs RGB, InsightFace expects BGR) img = img[:, :, ::-1] return img