ensemble in find function

This commit is contained in:
Şefik Serangil 2020-06-08 09:46:08 +03:00
parent cc5440c6d7
commit 2f9815a1fc
2 changed files with 168 additions and 30 deletions

View File

@ -498,13 +498,51 @@ def find(img_path, db_path
elif model_name == 'DeepFace': elif model_name == 'DeepFace':
print("Using FB DeepFace model backend", distance_metric,"distance.") print("Using FB DeepFace model backend", distance_metric,"distance.")
model = FbDeepFace.loadModel() model = FbDeepFace.loadModel()
elif model_name == 'Ensemble':
print("Ensemble learning enabled")
import lightgbm as lgb #lightgbm==2.3.1
model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace']
metric_names = ['cosine', 'euclidean', 'euclidean_l2']
models = {}
pbar = tqdm(range(0, len(model_names)), desc='Face recognition models')
for index in pbar:
if index == 0:
pbar.set_description("Loading VGG-Face")
models['VGG-Face'] = VGGFace.loadModel()
elif index == 1:
pbar.set_description("Loading FaceNet")
models['Facenet'] = Facenet.loadModel()
elif index == 2:
pbar.set_description("Loading OpenFace")
models['OpenFace'] = OpenFace.loadModel()
elif index == 3:
pbar.set_description("Loading DeepFace")
models['DeepFace'] = FbDeepFace.loadModel()
else: else:
raise ValueError("Invalid model_name passed - ", model_name) raise ValueError("Invalid model_name passed - ", model_name)
else: #model != None else: #model != None
print("Already built model is passed") print("Already built model is passed")
if model_name == 'Ensemble':
#validate model dictionary because it might be passed from input as pre-trained
found_models = []
for key, value in model.items():
found_models.append(key)
if ('VGG-Face' in found_models) and ('Facenet' in found_models) and ('OpenFace' in found_models) and ('DeepFace' in found_models):
print("Ensemble learning will be applied for ", found_models," models")
else:
raise ValueError("You would like to apply ensemble learning and pass pre-built models but models must contain [VGG-Face, Facenet, OpenFace, DeepFace] but you passed "+found_models)
input_shape = model.layers[0].input_shape[1:3] #threshold = functions.findThreshold(model_name, distance_metric)
threshold = functions.findThreshold(model_name, distance_metric)
#--------------------------------------- #---------------------------------------
@ -542,12 +580,30 @@ def find(img_path, db_path
#for employee in employees: #for employee in employees:
for index in pbar: for index in pbar:
employee = employees[index] employee = employees[index]
img = functions.detectFace(employee, input_shape, enforce_detection = enforce_detection)
representation = model.predict(img)[0,:]
instance = [] if model_name != 'Ensemble':
instance.append(employee)
instance.append(representation) input_shape = model.layers[0].input_shape[1:3]
img = functions.detectFace(employee, input_shape, enforce_detection = enforce_detection)
representation = model.predict(img)[0,:]
instance = []
instance.append(employee)
instance.append(representation)
else: #ensemble learning
instance = []
instance.append(employee)
for j in model_names:
model = models[j]
input_shape = model.layers[0].input_shape[1:3]
img = functions.detectFace(employee, input_shape, enforce_detection = enforce_detection)
representation = model.predict(img)[0,:]
instance.append(representation)
#-------------------------------
representations.append(instance) representations.append(instance)
@ -559,7 +615,12 @@ def find(img_path, db_path
#---------------------------- #----------------------------
#we got representations for database #we got representations for database
df = pd.DataFrame(representations, columns = ["identity", "representation"])
if model_name != 'Ensemble':
df = pd.DataFrame(representations, columns = ["identity", "representation"])
else: #ensemble learning
df = pd.DataFrame(representations, columns = ["identity", "VGG-Face_representation", "Facenet_representation", "OpenFace_representation", "DeepFace_representation"])
df_base = df.copy() df_base = df.copy()
resp_obj = [] resp_obj = []
@ -569,31 +630,106 @@ def find(img_path, db_path
img_path = img_paths[j] img_path = img_paths[j]
#find representation for passed image #find representation for passed image
img = functions.detectFace(img_path, input_shape, enforce_detection = enforce_detection)
target_representation = model.predict(img)[0,:] if model_name == 'Ensemble':
for j in model_names:
distances = [] model = models[j]
for index, instance in df.iterrows(): input_shape = model.layers[0].input_shape[1:3]
source_representation = instance["representation"] img = functions.detectFace(img_path, input_shape, enforce_detection = enforce_detection)
target_representation = model.predict(img)[0,:]
for k in metric_names:
distances = []
for index, instance in df.iterrows():
source_representation = instance["%s_representation" % (j)]
if k == 'cosine':
distance = dst.findCosineDistance(source_representation, target_representation)
elif k == 'euclidean':
distance = dst.findEuclideanDistance(source_representation, target_representation)
elif k == 'euclidean_l2':
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
distances.append(distance)
if j == 'OpenFace' and k == 'euclidean':
continue
else:
df["%s_%s" % (j, k)] = distances
if distance_metric == 'cosine': #----------------------------------
distance = dst.findCosineDistance(source_representation, target_representation)
elif distance_metric == 'euclidean':
distance = dst.findEuclideanDistance(source_representation, target_representation)
elif distance_metric == 'euclidean_l2':
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
distances.append(distance) feature_names = []
for j in model_names:
for k in metric_names:
if j == 'OpenFace' and k == 'euclidean':
continue
else:
feature = '%s_%s' % (j, k)
feature_names.append(feature)
#print(df[feature_names].head())
x = df[feature_names].values
#----------------------------------
#lightgbm model
deepface_path = DeepFace.__file__
deepface_path = deepface_path.replace("\\", "/").replace("/deepface/DeepFace.py", "")
ensemble_model_path = deepface_path+"/models/face-recognition-ensemble-model.txt"
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
y = deepface_ensemble.predict(x)
verified_labels = []; scores = []
for i in y:
verified = np.argmax(i) == 1
score = i[np.argmax(i)]
verified_labels.append(verified)
scores.append(score)
df['verified'] = verified_labels
df['score'] = scores
df = df[df.verified == True]
df = df[df.score > 0.99] #confidence score
df = df.sort_values(by = ["score"], ascending=False).reset_index(drop=True)
resp_obj.append(df)
df = df_base.copy() #restore df for the next iteration
#----------------------------------
if model_name != 'Ensemble':
input_shape = model.layers[0].input_shape[1:3]
img = functions.detectFace(img_path, input_shape, enforce_detection = enforce_detection)
target_representation = model.predict(img)[0,:]
df["distance"] = distances distances = []
df = df.drop(columns = ["representation"]) for index, instance in df.iterrows():
df = df[df.distance <= threshold] source_representation = instance["representation"]
df = df.sort_values(by = ["distance"], ascending=True).reset_index(drop=True) if distance_metric == 'cosine':
resp_obj.append(df) distance = dst.findCosineDistance(source_representation, target_representation)
df = df_base.copy() #restore df for the next iteration elif distance_metric == 'euclidean':
distance = dst.findEuclideanDistance(source_representation, target_representation)
elif distance_metric == 'euclidean_l2':
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
distances.append(distance)
threshold = functions.findThreshold(model_name, distance_metric)
df["distance"] = distances
df = df.drop(columns = ["representation"])
df = df[df.distance <= threshold]
df = df.sort_values(by = ["distance"], ascending=True).reset_index(drop=True)
resp_obj.append(df)
df = df_base.copy() #restore df for the next iteration
toc = time.time() toc = time.time()

View File

@ -5,6 +5,8 @@ import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#----------------------------------------- #-----------------------------------------
#TODO: add find function in unit tests
print("Bulk tests") print("Bulk tests")
print("-----------------------------------------") print("-----------------------------------------")