mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
saving video output in stream is enabled
This commit is contained in:
parent
33a502f609
commit
2f9ef19e09
@ -68,18 +68,18 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
|
||||
|
||||
|
||||
def verify(
|
||||
img1_path: Union[str, np.ndarray, List[float]],
|
||||
img2_path: Union[str, np.ndarray, List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
img1_path: Union[str, np.ndarray, List[float]],
|
||||
img2_path: Union[str, np.ndarray, List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Verify if an image pair represents the same person or different persons.
|
||||
@ -164,14 +164,14 @@ def verify(
|
||||
|
||||
|
||||
def analyze(
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||
@ -263,20 +263,20 @@ def analyze(
|
||||
|
||||
|
||||
def find(
|
||||
img_path: Union[str, np.ndarray],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||
"""
|
||||
Identify individuals in a database
|
||||
@ -369,15 +369,15 @@ def find(
|
||||
|
||||
|
||||
def represent(
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Represent facial images as multi-dimensional vector embeddings.
|
||||
@ -441,15 +441,16 @@ def represent(
|
||||
|
||||
|
||||
def stream(
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
output_path: Optional[str] = None, # New parameter
|
||||
) -> None:
|
||||
"""
|
||||
Run real time face recognition and facial attribute analysis
|
||||
@ -478,6 +479,9 @@ def stream(
|
||||
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
||||
|
||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||
|
||||
output_path (str): Path to save the output video. If None, no video is saved.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@ -495,19 +499,20 @@ def stream(
|
||||
time_threshold=time_threshold,
|
||||
frame_threshold=frame_threshold,
|
||||
anti_spoofing=anti_spoofing,
|
||||
output_path=output_path, # Pass the output_path to analysis
|
||||
)
|
||||
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract faces from a given image
|
||||
@ -584,11 +589,11 @@ def cli() -> None:
|
||||
|
||||
|
||||
def detectFace(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> Union[np.ndarray, None]:
|
||||
"""
|
||||
Deprecated face detection function. Use extract_faces for same functionality.
|
||||
|
@ -34,42 +34,29 @@ def analysis(
|
||||
time_threshold=5,
|
||||
frame_threshold=5,
|
||||
anti_spoofing: bool = False,
|
||||
output_path: Optional[str] = None, # New parameter
|
||||
):
|
||||
"""
|
||||
Run real time face recognition and facial attribute analysis
|
||||
Run real-time face recognition and facial attribute analysis, with optional video output.
|
||||
|
||||
Args:
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face)
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
'centerface' or 'skip' (default is opencv).
|
||||
|
||||
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
|
||||
'euclidean', 'euclidean_l2' (default is cosine).
|
||||
|
||||
enable_face_analysis (bool): Flag to enable face analysis (default is True).
|
||||
|
||||
source (Any): The source for the video stream (default is 0, which represents the
|
||||
default camera).
|
||||
|
||||
time_threshold (int): The time threshold (in seconds) for face recognition (default is 5).
|
||||
|
||||
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
||||
|
||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||
db_path (str): Path to the folder containing image files.
|
||||
model_name (str): Model for face recognition.
|
||||
detector_backend (str): Face detector backend.
|
||||
distance_metric (str): Metric for measuring similarity.
|
||||
enable_face_analysis (bool): Flag to enable face analysis.
|
||||
source (Any): The source for the video stream (camera index or video file path).
|
||||
time_threshold (int): Time threshold (in seconds) for face recognition.
|
||||
frame_threshold (int): Frame threshold for face recognition.
|
||||
anti_spoofing (bool): Flag to enable anti-spoofing.
|
||||
output_path (str): Path to save the output video. If None, no video is saved.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# initialize models
|
||||
# Initialize models
|
||||
build_demography_models(enable_face_analysis=enable_face_analysis)
|
||||
build_facial_recognition_model(model_name=model_name)
|
||||
# call a dummy find function for db_path once to create embeddings before starting webcam
|
||||
_ = search_identity(
|
||||
detected_face=np.zeros([224, 224, 3]),
|
||||
db_path=db_path,
|
||||
@ -78,35 +65,40 @@ def analysis(
|
||||
model_name=model_name,
|
||||
)
|
||||
|
||||
cap = cv2.VideoCapture(source if isinstance(source, str) else int(source))
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Cannot open video source: {source}")
|
||||
return
|
||||
|
||||
# Get video properties
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for output file
|
||||
|
||||
# Initialize video writer if output_path is provided
|
||||
video_writer = None
|
||||
if output_path:
|
||||
video_writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
||||
|
||||
freezed_img = None
|
||||
freeze = False
|
||||
num_frames_with_faces = 0
|
||||
tic = time.time()
|
||||
|
||||
# If source is an integer, use it as a webcam index. Otherwise, treat it as a video file path.
|
||||
if isinstance(source, int):
|
||||
cap = cv2.VideoCapture(source) # webcam
|
||||
else:
|
||||
cap = cv2.VideoCapture(str(source)) # video file
|
||||
while True:
|
||||
has_frame, img = cap.read()
|
||||
if not has_frame:
|
||||
break
|
||||
|
||||
# we are adding some figures into img such as identified facial image, age, gender
|
||||
# that is why, we need raw image itself to make analysis
|
||||
raw_img = img.copy()
|
||||
|
||||
faces_coordinates = []
|
||||
if freeze is False:
|
||||
|
||||
if not freeze:
|
||||
faces_coordinates = grab_facial_areas(
|
||||
img=img, detector_backend=detector_backend, anti_spoofing=anti_spoofing
|
||||
)
|
||||
|
||||
# we will pass img to analyze modules (identity, demography) and add some illustrations
|
||||
# that is why, we will not be able to extract detected face from img clearly
|
||||
detected_faces = extract_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||
|
||||
img = highlight_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||
img = countdown_to_freeze(
|
||||
img=img,
|
||||
@ -116,22 +108,18 @@ def analysis(
|
||||
)
|
||||
|
||||
num_frames_with_faces = num_frames_with_faces + 1 if len(faces_coordinates) else 0
|
||||
|
||||
freeze = num_frames_with_faces > 0 and num_frames_with_faces % frame_threshold == 0
|
||||
|
||||
if freeze:
|
||||
# add analyze results into img - derive from raw_img
|
||||
img = highlight_facial_areas(
|
||||
img=raw_img, faces_coordinates=faces_coordinates, anti_spoofing=anti_spoofing
|
||||
)
|
||||
|
||||
# age, gender and emotion analysis
|
||||
img = perform_demography_analysis(
|
||||
enable_face_analysis=enable_face_analysis,
|
||||
img=raw_img,
|
||||
faces_coordinates=faces_coordinates,
|
||||
detected_faces=detected_faces,
|
||||
)
|
||||
# facial recogntion analysis
|
||||
img = perform_facial_recognition(
|
||||
img=img,
|
||||
faces_coordinates=faces_coordinates,
|
||||
@ -141,30 +129,31 @@ def analysis(
|
||||
distance_metric=distance_metric,
|
||||
model_name=model_name,
|
||||
)
|
||||
|
||||
# freeze the img after analysis
|
||||
freezed_img = img.copy()
|
||||
|
||||
# start counter for freezing
|
||||
tic = time.time()
|
||||
logger.info("freezed")
|
||||
logger.info("Image frozen for analysis")
|
||||
|
||||
elif freeze is True and time.time() - tic > time_threshold:
|
||||
elif freeze and time.time() - tic > time_threshold:
|
||||
freeze = False
|
||||
freezed_img = None
|
||||
# reset counter for freezing
|
||||
tic = time.time()
|
||||
logger.info("freeze released")
|
||||
logger.info("Freeze released")
|
||||
|
||||
freezed_img = countdown_to_release(img=freezed_img, tic=tic, time_threshold=time_threshold)
|
||||
display_img = img if freezed_img is None else freezed_img
|
||||
|
||||
cv2.imshow("img", img if freezed_img is None else freezed_img)
|
||||
# Save the frame to output video if writer is initialized
|
||||
if video_writer:
|
||||
video_writer.write(display_img)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"): # press q to quit
|
||||
cv2.imshow("img", display_img)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# kill open cv things
|
||||
# Release resources
|
||||
cap.release()
|
||||
if video_writer:
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user