Converted to unittest

This commit is contained in:
Onur Atakan ULUSOY 2022-05-11 16:44:48 +00:00
parent 6622d84a91
commit 34c2dbef17
2 changed files with 241 additions and 232 deletions

View File

@ -67,4 +67,4 @@ jobs:
- name: Test with pytest - name: Test with pytest
run: | run: |
cd tests cd tests
pytest /home/runner/work/deepface/tests/unit_tests.py pytest unit_tests.py

View File

@ -9,177 +9,182 @@ from deepface import DeepFace
from deepface.commons import functions from deepface.commons import functions
import json import json
import time import time
import unittest
#----------------------------------------- #-----------------------------------------
import tensorflow as tf import tensorflow as tf
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 2: class deepface_unit_tests(unittest.TestCase):
def test_deepface(self):
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 2:
import logging import logging
tf.get_logger().setLevel(logging.ERROR) tf.get_logger().setLevel(logging.ERROR)
print("Running unit tests for TF ", tf.__version__) print("Running unit tests for TF ", tf.__version__)
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
from deepface.extendedmodels import Age, Gender, Race, Emotion from deepface.extendedmodels import Age, Gender, Race, Emotion
print("-----------------------------------------") print("-----------------------------------------")
#----------------------------------------- #-----------------------------------------
print("DeepFace.detectFace test") print("DeepFace.detectFace test")
#detectors = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface'] #detectors = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface']
detectors = ['opencv', 'ssd', 'mtcnn', 'retinaface'] detectors = ['opencv', 'ssd', 'mtcnn', 'retinaface']
for detector in detectors: for detector in detectors:
img = DeepFace.detectFace("dataset/img11.jpg", detector_backend = detector) img = DeepFace.detectFace("dataset/img11.jpg", detector_backend = detector)
print(detector," test is done") print(detector," test is done")
#import matplotlib.pyplot as plt #import matplotlib.pyplot as plt
#plt.imshow(img) #plt.imshow(img)
#plt.show() #plt.show()
#----------------------------------------- #-----------------------------------------
print("-----------------------------------------") print("-----------------------------------------")
img_path = "dataset/img1.jpg" img_path = "dataset/img1.jpg"
embedding = DeepFace.represent(img_path) embedding = DeepFace.represent(img_path)
print("Function returned ", len(embedding), "dimensional vector") print("Function returned ", len(embedding), "dimensional vector")
model_name = "VGG-Face" model_name = "VGG-Face"
model = DeepFace.build_model(model_name) model = DeepFace.build_model(model_name)
print(model_name," is built") print(model_name," is built")
embedding = DeepFace.represent(img_path, model = model) embedding = DeepFace.represent(img_path, model = model)
print("Represent function returned ", len(embedding), "dimensional vector") print("Represent function returned ", len(embedding), "dimensional vector")
#----------------------------------------- #-----------------------------------------
dataset = [ dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True], ['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img1.jpg', 'dataset/img6.jpg', True] ['dataset/img1.jpg', 'dataset/img6.jpg', True]
] ]
print("-----------------------------------------") print("-----------------------------------------")
print("Face detectors test") print("Face detectors test")
print("retinaface detector") print("retinaface detector")
res = DeepFace.verify(dataset, detector_backend = 'retinaface') res = DeepFace.verify(dataset, detector_backend = 'retinaface')
print(res) print(res)
print("ssd detector") print("ssd detector")
res = DeepFace.verify(dataset, detector_backend = 'ssd') res = DeepFace.verify(dataset, detector_backend = 'ssd')
print(res) print(res)
print("opencv detector") print("opencv detector")
res = DeepFace.verify(dataset, detector_backend = 'opencv') res = DeepFace.verify(dataset, detector_backend = 'opencv')
print(res) print(res)
if False: if False:
print("dlib detector") print("dlib detector")
res = DeepFace.verify(dataset, detector_backend = 'dlib') res = DeepFace.verify(dataset, detector_backend = 'dlib')
print(res) print(res)
print("mtcnn detector") print("mtcnn detector")
res = DeepFace.verify(dataset, detector_backend = 'mtcnn') res = DeepFace.verify(dataset, detector_backend = 'mtcnn')
print(res) print(res)
print("-----------------------------------------") print("-----------------------------------------")
print("Single find function test") print("Single find function test")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset" df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset"
#, model_name = 'Dlib' #, model_name = 'Dlib'
) )
print(df.head()) print(df.head())
print("-----------------------------------------") print("-----------------------------------------")
print("Pre-built model for single find function test") print("Pre-built model for single find function test")
#model_name = "VGG-Face" #model_name = "VGG-Face"
#model = DeepFace.build_model(model_name) #model = DeepFace.build_model(model_name)
#print(model_name," is built") #print(model_name," is built")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset" df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset"
, model_name = model_name, model = model , model_name = model_name, model = model
) )
print(df.head()) print(df.head())
print("-----------------------------------------") print("-----------------------------------------")
print("Bulk find function tests") print("Bulk find function tests")
dfs = DeepFace.find(img_path = ["dataset/img1.jpg", "dataset/img2.jpg"], db_path = "dataset" dfs = DeepFace.find(img_path = ["dataset/img1.jpg", "dataset/img2.jpg"], db_path = "dataset"
#, model_name = 'Dlib' #, model_name = 'Dlib'
) )
print(dfs[0].head()) print(dfs[0].head())
print(dfs[1].head()) print(dfs[1].head())
print("-----------------------------------------") print("-----------------------------------------")
print("Bulk verification tests") print("Bulk verification tests")
resp_obj = DeepFace.verify(dataset) resp_obj = DeepFace.verify(dataset)
print(resp_obj) print(resp_obj)
print(resp_obj["pair_1"]["verified"] == True) print(resp_obj["pair_1"]["verified"] == True)
print(resp_obj["pair_2"]["verified"] == True) print(resp_obj["pair_2"]["verified"] == True)
print("-----------------------------------------") print("-----------------------------------------")
print("Bulk facial analysis tests") print("Bulk facial analysis tests")
dataset = [ dataset = [
'dataset/img1.jpg', 'dataset/img1.jpg',
'dataset/img2.jpg', 'dataset/img2.jpg',
'dataset/img5.jpg', 'dataset/img5.jpg',
'dataset/img6.jpg' 'dataset/img6.jpg'
] ]
resp_obj = DeepFace.analyze(dataset) resp_obj = DeepFace.analyze(dataset)
print(resp_obj["instance_1"]["age"]," years old ", resp_obj["instance_1"]["dominant_emotion"], " ",resp_obj["instance_1"]["gender"]) print(resp_obj["instance_1"]["age"]," years old ", resp_obj["instance_1"]["dominant_emotion"], " ",resp_obj["instance_1"]["gender"])
print(resp_obj["instance_2"]["age"]," years old ", resp_obj["instance_2"]["dominant_emotion"], " ",resp_obj["instance_2"]["gender"]) print(resp_obj["instance_2"]["age"]," years old ", resp_obj["instance_2"]["dominant_emotion"], " ",resp_obj["instance_2"]["gender"])
print(resp_obj["instance_3"]["age"]," years old ", resp_obj["instance_3"]["dominant_emotion"], " ",resp_obj["instance_3"]["gender"]) print(resp_obj["instance_3"]["age"]," years old ", resp_obj["instance_3"]["dominant_emotion"], " ",resp_obj["instance_3"]["gender"])
print(resp_obj["instance_4"]["age"]," years old ", resp_obj["instance_4"]["dominant_emotion"], " ",resp_obj["instance_4"]["gender"]) print(resp_obj["instance_4"]["age"]," years old ", resp_obj["instance_4"]["dominant_emotion"], " ",resp_obj["instance_4"]["gender"])
print("-----------------------------------------") print("-----------------------------------------")
print("Facial analysis test. Passing nothing as an action") print("Facial analysis test. Passing nothing as an action")
img = "dataset/img4.jpg" img = "dataset/img4.jpg"
demography = DeepFace.analyze(img) demography = DeepFace.analyze(img)
print(demography) print(demography)
print("-----------------------------------------") print("-----------------------------------------")
print("Facial analysis test. Passing all to the action") print("Facial analysis test. Passing all to the action")
demography = DeepFace.analyze(img, ['age', 'gender', 'race', 'emotion']) demography = DeepFace.analyze(img, ['age', 'gender', 'race', 'emotion'])
print("Demography:") print("Demography:")
print(demography) print(demography)
#check response is a valid json #check response is a valid json
print("Age: ", demography["age"]) print("Age: ", demography["age"])
print("Gender: ", demography["gender"]) print("Gender: ", demography["gender"])
print("Race: ", demography["dominant_race"]) print("Race: ", demography["dominant_race"])
print("Emotion: ", demography["dominant_emotion"]) print("Emotion: ", demography["dominant_emotion"])
print("-----------------------------------------") print("-----------------------------------------")
print("Facial analysis test 2. Remove some actions and check they are not computed") print("Facial analysis test 2. Remove some actions and check they are not computed")
demography = DeepFace.analyze(img, ['age', 'gender']) demography = DeepFace.analyze(img, ['age', 'gender'])
print("Age: ", demography.get("age")) print("Age: ", demography.get("age"))
print("Gender: ", demography.get("gender")) print("Gender: ", demography.get("gender"))
print("Race: ", demography.get("dominant_race")) print("Race: ", demography.get("dominant_race"))
print("Emotion: ", demography.get("dominant_emotion")) print("Emotion: ", demography.get("dominant_emotion"))
print("-----------------------------------------") print("-----------------------------------------")
print("Face recognition tests") print("Face recognition tests")
dataset = [ dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True], ['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img5.jpg', 'dataset/img6.jpg', True], ['dataset/img5.jpg', 'dataset/img6.jpg', True],
['dataset/img6.jpg', 'dataset/img7.jpg', True], ['dataset/img6.jpg', 'dataset/img7.jpg', True],
@ -191,15 +196,15 @@ dataset = [
['dataset/img2.jpg', 'dataset/img3.jpg', False], ['dataset/img2.jpg', 'dataset/img3.jpg', False],
['dataset/img6.jpg', 'dataset/img8.jpg', False], ['dataset/img6.jpg', 'dataset/img8.jpg', False],
['dataset/img6.jpg', 'dataset/img9.jpg', False], ['dataset/img6.jpg', 'dataset/img9.jpg', False],
] ]
#models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib', 'ArcFace'] #models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib', 'ArcFace']
models = ['VGG-Face', 'Facenet', 'Facenet512', 'ArcFace', 'SFace'] #those are robust models models = ['VGG-Face', 'Facenet', 'Facenet512', 'ArcFace', 'SFace'] #those are robust models
metrics = ['cosine', 'euclidean', 'euclidean_l2'] metrics = ['cosine', 'euclidean', 'euclidean_l2']
passed_tests = 0; test_cases = 0 passed_tests = 0; test_cases = 0
for model in models: for model in models:
#prebuilt_model = DeepFace.build_model(model) #prebuilt_model = DeepFace.build_model(model)
#print(model," is built") #print(model," is built")
for metric in metrics: for metric in metrics:
@ -233,51 +238,51 @@ for model in models:
print("--------------------------") print("--------------------------")
#----------------------------------------- #-----------------------------------------
print("Passed unit tests: ",passed_tests," / ",test_cases) print("Passed unit tests: ",passed_tests," / ",test_cases)
min_score = 70 min_score = 70
accuracy = 100 * passed_tests / test_cases accuracy = 100 * passed_tests / test_cases
accuracy = round(accuracy, 2) accuracy = round(accuracy, 2)
if accuracy >= min_score: if accuracy >= min_score:
print("Unit tests are completed successfully. Score: ",accuracy,"%") print("Unit tests are completed successfully. Score: ",accuracy,"%")
else: else:
raise ValueError("Unit test score does not satisfy the minimum required accuracy. Minimum expected score is ", min_score,"% but this got ",accuracy,"%") raise ValueError("Unit test score does not satisfy the minimum required accuracy. Minimum expected score is ", min_score,"% but this got ",accuracy,"%")
#----------------------------------- #-----------------------------------
#----------------------------------- #-----------------------------------
print("Analyze function with passing pre-trained model") print("Analyze function with passing pre-trained model")
emotion_model = DeepFace.build_model("Emotion") emotion_model = DeepFace.build_model("Emotion")
age_model = DeepFace.build_model("Age") age_model = DeepFace.build_model("Age")
gender_model = DeepFace.build_model("Gender") gender_model = DeepFace.build_model("Gender")
race_model = DeepFace.build_model("Race") race_model = DeepFace.build_model("Race")
facial_attribute_models = {} facial_attribute_models = {}
facial_attribute_models["emotion"] = emotion_model facial_attribute_models["emotion"] = emotion_model
facial_attribute_models["age"] = age_model facial_attribute_models["age"] = age_model
facial_attribute_models["gender"] = gender_model facial_attribute_models["gender"] = gender_model
facial_attribute_models["race"] = race_model facial_attribute_models["race"] = race_model
resp_obj = DeepFace.analyze("dataset/img1.jpg", models=facial_attribute_models) resp_obj = DeepFace.analyze("dataset/img1.jpg", models=facial_attribute_models)
print(resp_obj) print(resp_obj)
#----------------------------------- #-----------------------------------
print("--------------------------") print("--------------------------")
if False: if False:
print("Ensemble for find function") print("Ensemble for find function")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset", model_name = "Ensemble") df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset", model_name = "Ensemble")
print(df.head()) print(df.head())
#----------------------------------- #-----------------------------------
print("--------------------------") print("--------------------------")
if False: if False:
print("Ensemble for verify function") print("Ensemble for verify function")
resp_obj = DeepFace.verify(dataset, model_name = "Ensemble") resp_obj = DeepFace.verify(dataset, model_name = "Ensemble")
@ -287,10 +292,10 @@ if False:
score = item["score"] score = item["score"]
print(verified) print(verified)
#----------------------------------- #-----------------------------------
print("--------------------------") print("--------------------------")
if False: if False:
print("Pre-trained ensemble method - find") print("Pre-trained ensemble method - find")
@ -302,43 +307,47 @@ if False:
print(df) print(df)
#----------------------------------- #-----------------------------------
print("--------------------------") print("--------------------------")
if False: if False:
print("Pre-trained ensemble method - verify") print("Pre-trained ensemble method - verify")
res = DeepFace.verify(dataset, model_name = "Ensemble", model = model) res = DeepFace.verify(dataset, model_name = "Ensemble", model = model)
print(res) print(res)
#----------------------------------- #-----------------------------------
print("--------------------------") print("--------------------------")
import cv2 import cv2
print("Passing numpy array to analyze function") print("Passing numpy array to analyze function")
img = cv2.imread("dataset/img1.jpg") img = cv2.imread("dataset/img1.jpg")
resp_obj = DeepFace.analyze(img) resp_obj = DeepFace.analyze(img)
print(resp_obj) print(resp_obj)
print("--------------------------") print("--------------------------")
print("Passing numpy array to verify function") print("Passing numpy array to verify function")
img1 = cv2.imread("dataset/img1.jpg") img1 = cv2.imread("dataset/img1.jpg")
img2 = cv2.imread("dataset/img2.jpg") img2 = cv2.imread("dataset/img2.jpg")
res = DeepFace.verify(img1, img2) res = DeepFace.verify(img1, img2)
print(res) print(res)
print("--------------------------") print("--------------------------")
print("Passing numpy array to find function") print("Passing numpy array to find function")
img1 = cv2.imread("dataset/img1.jpg") img1 = cv2.imread("dataset/img1.jpg")
df = DeepFace.find(img1, db_path = "dataset") df = DeepFace.find(img1, db_path = "dataset")
print(df.head()) print(df.head())
print("--------------------------") print("--------------------------")
self.assertEqual(accuracy >= min_score, False, "A problem on the deepface installation.")
unittest.main(exit=False)