mirror of
https://github.com/serengil/deepface.git
synced 2025-07-29 14:21:39 +00:00
modularization face recognition
This commit is contained in:
parent
415c648dbc
commit
350acecec0
71
video_face/database_encode.py
Normal file
71
video_face/database_encode.py
Normal file
@ -0,0 +1,71 @@
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
import time
|
||||
import os
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions, distance as dst
|
||||
|
||||
|
||||
def encode(db_path, model_name='VGG-Face', detector_backend='retinaface'):
|
||||
model = DeepFace.build_model(model_name)
|
||||
print(model_name, "is built")
|
||||
# threshold = dst.findThreshold(model_name, distance_metric)
|
||||
input_shape = functions.find_input_shape(model); input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||
|
||||
text_color = (255, 255, 255)
|
||||
|
||||
employees = []
|
||||
if os.path.isdir(db_path) == True:
|
||||
for r, d, f in os.walk(db_path):
|
||||
for file in f:
|
||||
if('.jpg' in file):
|
||||
exact_path = r + "/" + file
|
||||
employees.append(exact_path)
|
||||
|
||||
if os.path.isdir(db_path) == True:
|
||||
file_name = "representations_%s.pkl" % (model_name)
|
||||
file_name = file_name.replace("-", "_").lower()
|
||||
|
||||
if os.path.exists(db_path+"/"+file_name):
|
||||
|
||||
print("Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")
|
||||
|
||||
f = open(db_path+'/'+file_name, 'rb')
|
||||
embeddings = pickle.load(f)
|
||||
|
||||
print("There are ", len(embeddings)," representations found in ",file_name)
|
||||
|
||||
else:
|
||||
if len(employees) == 0:
|
||||
print("WARNING: There is no image in this path ( ", db_path,") . Face recognition will not be performed.")
|
||||
|
||||
if len(employees) > 0:
|
||||
input_shape = functions.find_input_shape(model)
|
||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||
|
||||
tic = time.time()
|
||||
pbar = tqdm(range(0, len(employees)), desc='Finding embeddings')
|
||||
embeddings = []
|
||||
for index in pbar:
|
||||
employee = employees[index]
|
||||
pbar.set_description("Finding embedding for %s" % (employee.split("/")[-1]))
|
||||
embedding = []
|
||||
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = False, detector_backend = detector_backend)
|
||||
img_representation = model.predict(img)[0,:]
|
||||
embedding.append(employee)
|
||||
embedding.append(img_representation)
|
||||
embeddings.append(embedding)
|
||||
f = open(db_path+'/'+file_name, "wb")
|
||||
pickle.dump(embeddings, f)
|
||||
f.close()
|
||||
toc = time.time()
|
||||
print("Embeddings found for given data set in ", toc-tic," seconds")
|
||||
|
||||
return employees, embeddings
|
32
video_face/detect.py
Normal file
32
video_face/detect.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
import time
|
||||
import os
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions, realtime, distance as dst
|
||||
from deepface.detectors import FaceDetector
|
||||
|
||||
|
||||
def face_det(frame, detector_backend, rec_model_input_size, smallest_faces=30):
|
||||
face_detector = FaceDetector.build_model(detector_backend)
|
||||
faces = FaceDetector.detect_faces(face_detector, detector_backend, frame, align = False)
|
||||
size_x = rec_model_input_size[0]; size_y = rec_model_input_size[1]
|
||||
detected_faces = []
|
||||
face_imgs = []
|
||||
for face, (x, y, w, h) in faces:
|
||||
if w > smallest_faces:
|
||||
# cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 1) #draw rectangle to main image
|
||||
detected_face = frame[int(y):int(y+h), int(x):int(x+w)] #crop detected face
|
||||
detected_face = functions.preprocess_face(img = detected_face, target_size = (size_y, size_x), enforce_detection = False, detector_backend = 'opencv')
|
||||
detected_faces.append((x,y,w,h))
|
||||
face_imgs.append(detected_face)
|
||||
if len(face_imgs) > 0:
|
||||
face_imgs = np.vstack(face_imgs)
|
||||
return detected_faces, face_imgs
|
63
video_face/main.py
Normal file
63
video_face/main.py
Normal file
@ -0,0 +1,63 @@
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
import time
|
||||
import os
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions, realtime, distance as dst
|
||||
from database_encode import encode
|
||||
from detect import face_det
|
||||
from recognize import face_recognize
|
||||
|
||||
|
||||
def main(db_path, model_name = 'VGG-Face', detector_backend = 'retinaface', distance_metric = 'cosine', source = 0, smallest_faces=30):
|
||||
model = DeepFace.build_model(model_name)
|
||||
print(model_name, "is built")
|
||||
input_shape = functions.find_input_shape(model)
|
||||
threshold = dst.findThreshold(model_name, distance_metric)
|
||||
employees, db_embeddings = encode(db_path, model_name=model_name, detector_backend=detector_backend)
|
||||
db_embeddings = [db_embeddings[i][1] for i in range(len(db_embeddings))]
|
||||
db_embeddings = np.vstack(db_embeddings)
|
||||
frame_count = 0
|
||||
cap = cv2.VideoCapture(source)
|
||||
while True:
|
||||
frame_count += 1
|
||||
ret, frame = cap.read()
|
||||
|
||||
if frame is None:
|
||||
break
|
||||
|
||||
if frame_count % 10 == 0:
|
||||
detected_faces, face_imgs = face_det(frame, detector_backend, rec_model_input_size=input_shape, smallest_faces=30)
|
||||
if len(face_imgs) > 0:
|
||||
shortest_distance, pred = face_recognize(face_imgs, db_embeddings, model, model_name, distance_metric)
|
||||
labels = [employees[i] for i in pred]
|
||||
for i, detected_face in enumerate(detected_faces):
|
||||
x = detected_face[0]; y = detected_face[1]
|
||||
w = detected_face[2]; h = detected_face[3]
|
||||
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 1)
|
||||
if shortest_distance[i] <= threshold:
|
||||
label = labels[i]
|
||||
cv2.putText(frame, label, (x, y+h+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
else:
|
||||
label = 'unknown'
|
||||
cv2.putText(frame, label, (x, y+h+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
||||
print("best_distance:{}, threshhold:{}, label:{}".format(shortest_distance, threshold, label))
|
||||
cv2.imshow('img', frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'): #press q to quit
|
||||
break
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main("D:/face/320_no_mask/", model_name = 'VGG-Face', detector_backend = 'ssd',
|
||||
# source='rtsp://admin:123456@192.168.123.235:554/stream1',
|
||||
source="C:/Users/DELL/Desktop/face_det/320.mp4",
|
||||
distance_metric='cosine', smallest_faces=20)
|
30
video_face/recognize.py
Normal file
30
video_face/recognize.py
Normal file
@ -0,0 +1,30 @@
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
import os
|
||||
import os
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
from deepface.commons import functions, realtime, distance as dst
|
||||
|
||||
|
||||
def face_recognize(faces, db_embeddings, model, model_name, distance_metric):
|
||||
|
||||
# threshold = dst.findThreshold(model_name, distance_metric)
|
||||
embeddings = model.predict(faces)
|
||||
|
||||
if distance_metric == 'cosine':
|
||||
distance = np.matmul(embeddings, np.transpose(db_embeddings))
|
||||
elif distance_metric == 'euclidean':
|
||||
distance = dst.findEuclideanDistance(embeddings, db_embeddings)
|
||||
elif distance_metric == 'euclidean_l2':
|
||||
distance = dst.findEuclideanDistance(dst.l2_normalize(embeddings), dst.l2_normalize(db_embeddings))
|
||||
|
||||
shortest_distance = np.max(distance, axis=1)
|
||||
pred = np.argmax(distance, axis=1)
|
||||
return shortest_distance, pred
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user