yolov11n and yolov11m added to model selection

This commit is contained in:
roberto-corno-nttdata 2024-12-07 23:00:16 +01:00
parent 2c2dc7b1f0
commit 38261e07e5
15 changed files with 173 additions and 86 deletions

View File

@ -29,8 +29,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"alignment = [False, True]\n", "alignment = [False, True]\n",
"models = [\"Facenet512\", \"Facenet\", \"VGG-Face\", \"ArcFace\", \"Dlib\", \"GhostFaceNet\", \"SFace\", \"OpenFace\", \"DeepFace\", \"DeepID\"]\n", "models = [\"Facenet512\", \"Facenet\", \"VGG-Face\", \"ArcFace\", \"Dlib\", \"GhostFaceNet\", \"SFace\", \"OpenFace\", \"DeepFace\", \"DeepID\", \"yolov8\", \"yolov11n\", \"yolov11s\", \"yolov11m\"]\n",
"detectors = [\"retinaface\", \"mtcnn\", \"fastmtcnn\", \"dlib\", \"yolov8\", \"yolov11n\", \"yolov11m\", \"yunet\", \"centerface\", \"mediapipe\", \"ssd\", \"opencv\", \"skip\"]\n", "detectors = [\"retinaface\", \"mtcnn\", \"fastmtcnn\", \"dlib\", \"yolov8\", \"yolov11n\", \"yolov11s\", \"yolov11m\", \"yunet\", \"centerface\", \"mediapipe\", \"ssd\", \"opencv\", \"skip\"]\n",
"distance_metrics = [\"euclidean\", \"euclidean_l2\", \"cosine\"]" "distance_metrics = [\"euclidean\", \"euclidean_l2\", \"cosine\"]"
] ]
}, },

View File

@ -56,7 +56,7 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib, - VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace, GhostFaceNet for face recognition ArcFace, SFace, GhostFaceNet for face recognition
- Age, Gender, Emotion, Race for facial attributes - Age, Gender, Emotion, Race for facial attributes
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11m', yunet, - opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11s','yolov11m', yunet,
fastmtcnn or centerface for face detectors fastmtcnn or centerface for face detectors
- Fasnet for spoofing - Fasnet for spoofing
task (str): facial_recognition, facial_attribute, face_detector, spoofing task (str): facial_recognition, facial_attribute, face_detector, spoofing
@ -96,7 +96,7 @@ def verify(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face). OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
@ -187,7 +187,7 @@ def analyze(
Set to False to avoid the exception for low-resolution images (default is True). Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
@ -298,7 +298,7 @@ def find(
Set to False to avoid the exception for low-resolution images (default is True). Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True). align (boolean): Perform alignment based on the eye positions (default is True).
@ -396,7 +396,7 @@ def represent(
(default is True). (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True). align (boolean): Perform alignment based on the eye positions (default is True).
@ -462,7 +462,7 @@ def stream(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face). OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
@ -517,7 +517,7 @@ def extract_faces(
as a string, numpy array (BGR), or base64 encoded images. as a string, numpy array (BGR), or base64 encoded images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception. enforce_detection (boolean): If no face is detected in an image, raise an exception.
@ -601,7 +601,7 @@ def detectFace(
added to resize the image (default is (224, 224)). added to resize the image (default is (224, 224)).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception. enforce_detection (boolean): If no face is detected in an image, raise an exception.

View File

@ -127,7 +127,7 @@ def download_all_models_in_one_shot() -> None:
MODEL_URL as SSD_MODEL, MODEL_URL as SSD_MODEL,
WEIGHTS_URL as SSD_WEIGHTS, WEIGHTS_URL as SSD_WEIGHTS,
) )
from deepface.models.face_detection.Yolo import ( from deepface.models.YoloModel import (
WEIGHT_URLS as YOLO_WEIGHTS, WEIGHT_URLS as YOLO_WEIGHTS,
WEIGHT_NAMES as YOLO_WEIGHT_NAMES, WEIGHT_NAMES as YOLO_WEIGHT_NAMES,
YoloModel YoloModel
@ -170,6 +170,10 @@ def download_all_models_in_one_shot() -> None:
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11N.value], "filename": YOLO_WEIGHT_NAMES[YoloModel.V11N.value],
"url": YOLO_WEIGHTS[YoloModel.V11N.value], "url": YOLO_WEIGHTS[YoloModel.V11N.value],
}, },
{
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11S.value],
"url": YOLO_WEIGHTS[YoloModel.V11S.value],
},
{ {
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11M.value], "filename": YOLO_WEIGHT_NAMES[YoloModel.V11M.value],
"url": YOLO_WEIGHTS[YoloModel.V11M.value], "url": YOLO_WEIGHTS[YoloModel.V11M.value],

View File

@ -0,0 +1,37 @@
# built-in dependencies
from typing import Any
# project dependencies
from deepface.models.YoloModel import YoloModel, WEIGHT_URLS, WEIGHT_NAMES
from deepface.commons import weight_utils
from deepface.commons.logger import Logger
logger = Logger()
class YoloClientBase:
def __init__(self, model: YoloModel):
self.model = self.build_model(model)
def build_model(self, model: YoloModel) -> Any:
"""
Build a yolo detector model
Returns:
model (Any)
"""
# Import the optional Ultralytics YOLO model
try:
from ultralytics import YOLO
except ModuleNotFoundError as e:
raise ImportError(
"Yolo is an optional detector, ensure the library is installed. "
"Please install using 'pip install ultralytics'"
) from e
weight_file = weight_utils.download_weights_if_necessary(
file_name=WEIGHT_NAMES[model.value], source_url=WEIGHT_URLS[model.value]
)
# Return face_detector
return YOLO(weight_file)

View File

@ -0,0 +1,21 @@
from enum import Enum
class YoloModel(Enum):
V8N = 0
V11N = 1
V11S = 2
V11M = 3
# Model's weights paths
WEIGHT_NAMES = ["yolov8n-face.pt",
"yolov11n-face.pt",
"yolov11s-face.pt",
"yolov11m-face.pt"]
# Google Drive URL from repo (https://github.com/derronqi/yolov8-face) ~6MB
WEIGHT_URLS = ["https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb",
"https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11n-face.pt",
"https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11s-face.pt",
"https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11m-face.pt"]

View File

@ -1,61 +1,22 @@
# built-in dependencies # built-in dependencies
import os import os
from typing import Any, List from typing import List
from enum import Enum
# 3rd party dependencies # 3rd party dependencies
import numpy as np import numpy as np
# project dependencies # project dependencies
from deepface.models.YoloClientBase import YoloClientBase
from deepface.models.YoloModel import YoloModel
from deepface.models.Detector import Detector, FacialAreaRegion from deepface.models.Detector import Detector, FacialAreaRegion
from deepface.commons import weight_utils
from deepface.commons.logger import Logger from deepface.commons.logger import Logger
logger = Logger() logger = Logger()
# Model's weights paths
WEIGHT_NAMES = ["yolov8n-face.pt",
"yolov11n-face.pt",
"yolov11m-face.pt"]
# Google Drive URL from repo (https://github.com/derronqi/yolov8-face) ~6MB class YoloDetectorClient(YoloClientBase, Detector):
WEIGHT_URLS = ["https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb",
"https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11n-face.pt",
"https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11m-face.pt"]
class YoloModel(Enum):
V8N = 0
V11N = 1
V11M = 2
class YoloClient(Detector):
def __init__(self, model: YoloModel): def __init__(self, model: YoloModel):
self.model = self.build_model(model) super().__init__(model)
def build_model(self, model: YoloModel) -> Any:
"""
Build a yolo detector model
Returns:
model (Any)
"""
# Import the optional Ultralytics YOLO model
try:
from ultralytics import YOLO
except ModuleNotFoundError as e:
raise ImportError(
"Yolo is an optional detector, ensure the library is installed. "
"Please install using 'pip install ultralytics'"
) from e
weight_file = weight_utils.download_weights_if_necessary(
file_name=WEIGHT_NAMES[model.value], source_url=WEIGHT_URLS[model.value]
)
# Return face_detector
return YOLO(weight_file)
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]: def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
""" """
@ -80,13 +41,16 @@ class YoloClient(Detector):
# For each face, extract the bounding box, the landmarks and confidence # For each face, extract the bounding box, the landmarks and confidence
for result in results: for result in results:
if result.boxes is None or result.keypoints is None: if result.boxes is None:
continue continue
# Extract the bounding box and the confidence # Extract the bounding box and the confidence
x, y, w, h = result.boxes.xywh.tolist()[0] x, y, w, h = result.boxes.xywh.tolist()[0]
confidence = result.boxes.conf.tolist()[0] confidence = result.boxes.conf.tolist()[0]
right_eye = None
left_eye = None
if result.keypoints is not None:
# right_eye_conf = result.keypoints.conf[0][0] # right_eye_conf = result.keypoints.conf[0][0]
# left_eye_conf = result.keypoints.conf[0][1] # left_eye_conf = result.keypoints.conf[0][1]
right_eye = result.keypoints.xy[0][0].tolist() right_eye = result.keypoints.xy[0][0].tolist()
@ -111,16 +75,21 @@ class YoloClient(Detector):
return resp return resp
class YoloClientV8n(YoloClient): class YoloDetectorClientV8n(YoloDetectorClient):
def __init__(self): def __init__(self):
super().__init__(YoloModel.V8N) super().__init__(YoloModel.V8N)
class YoloClientV11n(YoloClient): class YoloDetectorClientV11n(YoloDetectorClient):
def __init__(self): def __init__(self):
super().__init__(YoloModel.V11N) super().__init__(YoloModel.V11N)
class YoloClientV11m(YoloClient): class YoloDetectorClientV11s(YoloDetectorClient):
def __init__(self):
super().__init__(YoloModel.V11S)
class YoloDetectorClientV11m(YoloDetectorClient):
def __init__(self): def __init__(self):
super().__init__(YoloModel.V11M) super().__init__(YoloModel.V11M)

View File

@ -0,0 +1,44 @@
# built-in dependencies
from typing import List
# 3rd party dependencies
import numpy as np
# project dependencies
from deepface.models.YoloClientBase import YoloClientBase
from deepface.models.YoloModel import YoloModel
from deepface.models.FacialRecognition import FacialRecognition
from deepface.commons.logger import Logger
logger = Logger()
class YoloFacialRecognitionClient(YoloClientBase, FacialRecognition):
def __init__(self, model: YoloModel):
super().__init__(model)
self.model_name = "Yolo"
self.input_shape = None
self.output_shape = 512
def forward(self, img: np.ndarray) -> List[float]:
return self.model.embed(img)[0].tolist()
class YoloFacialRecognitionClientV8n(YoloFacialRecognitionClient):
def __init__(self):
super().__init__(YoloModel.V8N)
class YoloFacialRecognitionClientV11n(YoloFacialRecognitionClient):
def __init__(self):
super().__init__(YoloModel.V11N)
class YoloFacialRecognitionClientV11s(YoloFacialRecognitionClient):
def __init__(self):
super().__init__(YoloModel.V11S)
class YoloFacialRecognitionClientV11m(YoloFacialRecognitionClient):
def __init__(self):
super().__init__(YoloModel.V11M)

View File

@ -35,7 +35,7 @@ def analyze(
Set to False to avoid the exception for low-resolution images (default is True). Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',

View File

@ -38,7 +38,7 @@ def extract_faces(
as a string, numpy array (BGR), or base64 encoded images. as a string, numpy array (BGR), or base64 encoded images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv) (default is opencv)
enforce_detection (boolean): If no face is detected in an image, raise an exception. enforce_detection (boolean): If no face is detected in an image, raise an exception.

View File

@ -12,6 +12,7 @@ from deepface.models.facial_recognition import (
Dlib, Dlib,
Facenet, Facenet,
GhostFaceNet, GhostFaceNet,
Yolo as YoloFacialRecognition,
) )
from deepface.models.face_detection import ( from deepface.models.face_detection import (
FastMtCnn, FastMtCnn,
@ -21,7 +22,7 @@ from deepface.models.face_detection import (
Dlib as DlibDetector, Dlib as DlibDetector,
RetinaFace, RetinaFace,
Ssd, Ssd,
Yolo, Yolo as YoloFaceDetector,
YuNet, YuNet,
CenterFace, CenterFace,
) )
@ -38,7 +39,7 @@ def build_model(task: str, model_name: str) -> Any:
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib, - VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace, GhostFaceNet for face recognition ArcFace, SFace, GhostFaceNet for face recognition
- Age, Gender, Emotion, Race for facial attributes - Age, Gender, Emotion, Race for facial attributes
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11m', yunet, - opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, 'yolov11n', 'yolov11s', 'yolov11m', yunet,
fastmtcnn or centerface for face detectors fastmtcnn or centerface for face detectors
- Fasnet for spoofing - Fasnet for spoofing
Returns: Returns:
@ -60,6 +61,10 @@ def build_model(task: str, model_name: str) -> Any:
"ArcFace": ArcFace.ArcFaceClient, "ArcFace": ArcFace.ArcFaceClient,
"SFace": SFace.SFaceClient, "SFace": SFace.SFaceClient,
"GhostFaceNet": GhostFaceNet.GhostFaceNetClient, "GhostFaceNet": GhostFaceNet.GhostFaceNetClient,
"yolov8": YoloFacialRecognition.YoloFacialRecognitionClientV8n,
"yolov11n": YoloFacialRecognition.YoloFacialRecognitionClientV11n,
"yolov11s": YoloFacialRecognition.YoloFacialRecognitionClientV11s,
"yolov11m": YoloFacialRecognition.YoloFacialRecognitionClientV11m
}, },
"spoofing": { "spoofing": {
"Fasnet": FasNet.Fasnet, "Fasnet": FasNet.Fasnet,
@ -77,9 +82,10 @@ def build_model(task: str, model_name: str) -> Any:
"dlib": DlibDetector.DlibClient, "dlib": DlibDetector.DlibClient,
"retinaface": RetinaFace.RetinaFaceClient, "retinaface": RetinaFace.RetinaFaceClient,
"mediapipe": MediaPipe.MediaPipeClient, "mediapipe": MediaPipe.MediaPipeClient,
"yolov8": Yolo.YoloClientV8n, "yolov8": YoloFaceDetector.YoloDetectorClientV8n,
"yolov11n": Yolo.YoloClientV11n, "yolov11n": YoloFaceDetector.YoloDetectorClientV11n,
"yolov11m": Yolo.YoloClientV11m, "yolov11s": YoloFaceDetector.YoloDetectorClientV11s,
"yolov11m": YoloFaceDetector.YoloDetectorClientV11m,
"yunet": YuNet.YuNetClient, "yunet": YuNet.YuNetClient,
"fastmtcnn": FastMtCnn.FastMtCnnClient, "fastmtcnn": FastMtCnn.FastMtCnnClient,
"centerface": CenterFace.CenterFaceClient, "centerface": CenterFace.CenterFaceClient,

View File

@ -54,7 +54,7 @@ def find(
Default is True. Set to False to avoid the exception for low-resolution images. Default is True. Set to False to avoid the exception for low-resolution images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8','yolov11n','yolov11m', 'centerface' or 'skip'. 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8','yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'.
align (boolean): Perform alignment based on the eye positions. align (boolean): Perform alignment based on the eye positions.
@ -483,7 +483,7 @@ def find_batched(
Default is True. Set to False to avoid the exception for low-resolution images. Default is True. Set to False to avoid the exception for low-resolution images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip'. 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'.
align (boolean): Perform alignment based on the eye positions. align (boolean): Perform alignment based on the eye positions.

View File

@ -36,7 +36,7 @@ def represent(
Default is True. Set to False to avoid the exception for low-resolution images. Default is True. Set to False to avoid the exception for low-resolution images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip'. 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'.
align (boolean): Perform alignment based on the eye positions. align (boolean): Perform alignment based on the eye positions.
@ -122,6 +122,7 @@ def represent(
confidence = img_obj["confidence"] confidence = img_obj["confidence"]
# resize to expected shape of ml model # resize to expected shape of ml model
if target_size is not None:
img = preprocessing.resize_image( img = preprocessing.resize_image(
img=img, img=img,
# thanks to DeepId (!) # thanks to DeepId (!)

View File

@ -45,7 +45,7 @@ def analysis(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face). OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
@ -192,7 +192,7 @@ def search_identity(
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512, model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face). OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2' (default is cosine). 'euclidean', 'euclidean_l2' (default is cosine).
@ -374,7 +374,7 @@ def grab_facial_areas(
Args: Args:
img (np.ndarray): image itself img (np.ndarray): image itself
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
threshold (int): threshold for facial area, discard smaller ones threshold (int): threshold for facial area, discard smaller ones
Returns Returns
@ -443,7 +443,7 @@ def perform_facial_recognition(
db_path (string): Path to the folder containing image files. All detected faces db_path (string): Path to the folder containing image files. All detected faces
in the database will be considered in the decision-making process. in the database will be considered in the decision-making process.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv). (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2' (default is cosine). 'euclidean', 'euclidean_l2' (default is cosine).

View File

@ -47,7 +47,7 @@ def verify(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face). OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface', detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11m', 'centerface' or 'skip' 'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m', 'centerface' or 'skip'
(default is opencv) (default is opencv)
distance_metric (string): Metric for measuring similarity. Options: 'cosine', distance_metric (string): Metric for measuring similarity. Options: 'cosine',

View File

@ -22,6 +22,10 @@ model_names = [
"ArcFace", "ArcFace",
"SFace", "SFace",
"GhostFaceNet", "GhostFaceNet",
"yolov8",
"yolov11n",
"yolov11s",
"yolov11m"
] ]
detector_backends = [ detector_backends = [
@ -35,6 +39,7 @@ detector_backends = [
"yunet", "yunet",
"yolov8", "yolov8",
"yolov11n", "yolov11n",
"yolov11s",
"yolov11m", "yolov11m",
"centerface", "centerface",
] ]