mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Create test_buffalo_l
This commit is contained in:
parent
ca73032969
commit
38a2cf0942
46
tests/test_buffalo_l
Normal file
46
tests/test_buffalo_l
Normal file
@ -0,0 +1,46 @@
|
||||
import cv2
|
||||
import insightface
|
||||
import numpy as np
|
||||
from insightface.app import FaceAnalysis
|
||||
|
||||
# Initialize face analysis model
|
||||
app = FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider']) # Use 'CUDAExecutionProvider' for GPU
|
||||
app.prepare(ctx_id=-1) # ctx_id=-1 for CPU, 0 for GPU
|
||||
|
||||
def get_face_embedding(image_path):
|
||||
"""Extract face embedding from an image"""
|
||||
img = cv2.imread(image_path)
|
||||
if img is None:
|
||||
raise ValueError(f"Could not read image: {image_path}")
|
||||
|
||||
faces = app.get(img)
|
||||
|
||||
if len(faces) < 1:
|
||||
raise ValueError("No faces detected in the image")
|
||||
if len(faces) > 1:
|
||||
print("Warning: Multiple faces detected. Using first detected face")
|
||||
|
||||
return faces[0].embedding
|
||||
|
||||
def compare_faces(emb1, emb2, threshold=0.65): # Adjust this threshold according to your usecase.
|
||||
"""Compare two embeddings using cosine similarity"""
|
||||
similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
|
||||
return similarity, similarity > threshold
|
||||
|
||||
# Paths to your Indian face images
|
||||
image1_path = "dataset/img1.jpg"
|
||||
image2_path = "dataset/img2.jpg"
|
||||
|
||||
try:
|
||||
# Get embeddings
|
||||
emb1 = get_face_embedding(image1_path)
|
||||
emb2 = get_face_embedding(image2_path)
|
||||
|
||||
# Compare faces
|
||||
similarity_score, is_same_person = compare_faces(emb1, emb2)
|
||||
|
||||
print(f"Similarity Score: {similarity_score:.4f}")
|
||||
print(f"Same person? {'YES' if is_same_person else 'NO'}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {str(e)}")
|
Loading…
x
Reference in New Issue
Block a user