This commit is contained in:
Raghucharan16 2025-02-20 22:14:31 +05:30
commit 41ae9bbcf3
8 changed files with 218 additions and 85 deletions

View File

@ -385,7 +385,7 @@ def represent(
normalization: str = "base",
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
) -> Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]:
"""
Represent facial images as multi-dimensional vector embeddings.
@ -423,8 +423,9 @@ def represent(
max_faces (int): Set a limit on the number of faces to be processed (default is None).
Returns:
results (List[Dict[str, Any]]): A list of dictionaries, each containing the
following fields:
results (List[Dict[str, Any]] or List[Dict[str, Any]]): A list of dictionaries.
Result type becomes List of List of Dict if batch input passed.
Each containing the following fields:
- embedding (List[float]): Multidimensional vector representing facial features.
The number of dimensions varies based on the reference model

View File

@ -35,11 +35,11 @@ class Demography(ABC):
with x = image width, y = image height and c = channel
The channel dimension will be 1 if input is grayscale. (For emotion model)
"""
if not self.model_name: # Check if called from derived class
if not self.model_name: # Check if called from derived class
raise NotImplementedError("no model selected")
assert img_batch.ndim == 4, "expected 4-dimensional tensor input"
if img_batch.shape[0] == 1: # Single image
if img_batch.shape[0] == 1: # Single image
# Predict with legacy method.
return self.model(img_batch, training=False).numpy()[0, :]
@ -48,10 +48,8 @@ class Demography(ABC):
return self.model.predict_on_batch(img_batch)
def _preprocess_batch_or_single_input(
self,
img: Union[np.ndarray, List[np.ndarray]]
self, img: Union[np.ndarray, List[np.ndarray]]
) -> np.ndarray:
"""
Preprocess single or batch of images, return as 4-D numpy array.
Args:

View File

@ -13,7 +13,6 @@ from deepface.commons.logger import Logger
logger = Logger()
# ----------------------------------------
# dependency configurations
tf_version = package_utils.get_tf_major_version()
@ -25,12 +24,11 @@ else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
# ----------------------------------------
WEIGHTS_URL = (
"https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5"
)
# pylint: disable=too-few-public-methods
class ApparentAgeClient(Demography):
"""
@ -59,11 +57,10 @@ class ApparentAgeClient(Demography):
age_predictions = self._predict_internal(imgs)
# Calculate apparent ages
if len(age_predictions.shape) == 1: # Single prediction list
if len(age_predictions.shape) == 1: # Single prediction list
return find_apparent_age(age_predictions)
return np.array([
find_apparent_age(age_prediction) for age_prediction in age_predictions])
return np.array([find_apparent_age(age_prediction) for age_prediction in age_predictions])
def load_model(
@ -100,6 +97,7 @@ def load_model(
return age_model
def find_apparent_age(age_predictions: np.ndarray) -> np.float64:
"""
Find apparent age prediction from a given probas of ages
@ -108,7 +106,9 @@ def find_apparent_age(age_predictions: np.ndarray) -> np.float64:
Returns:
apparent_age (float)
"""
assert len(age_predictions.shape) == 1, f"Input should be a list of predictions, \
assert (
len(age_predictions.shape) == 1
), f"Input should be a list of predictions, \
not batched. Got shape: {age_predictions.shape}"
output_indexes = np.arange(0, 101)
apparent_age = np.sum(age_predictions * output_indexes)

View File

@ -123,7 +123,6 @@ def analyze(
batch_resp_obj.append(resp_obj)
return batch_resp_obj
# if actions is passed as tuple with single item, interestingly it becomes str here
if isinstance(actions, str):
actions = (actions,)

View File

@ -398,6 +398,7 @@ def __find_bulk_embeddings(
enforce_detection=enforce_detection,
align=align,
expand_percentage=expand_percentage,
color_face='bgr' # `represent` expects images in bgr format.
)
except ValueError as err:

View File

@ -20,7 +20,7 @@ def represent(
normalization: str = "base",
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
) -> Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]:
"""
Represent facial images as multi-dimensional vector embeddings.
@ -53,8 +53,9 @@ def represent(
max_faces (int): Set a limit on the number of faces to be processed (default is None).
Returns:
results (List[Dict[str, Any]]): A list of dictionaries, each containing the
following fields:
results (List[Dict[str, Any]] or List[Dict[str, Any]]): A list of dictionaries.
Result type becomes List of List of Dict if batch input passed.
Each containing the following fields:
- embedding (List[float]): Multidimensional vector representing facial features.
The number of dimensions varies based on the reference model
@ -80,16 +81,13 @@ def represent(
else:
images = [img_path]
batch_images = []
batch_regions = []
batch_confidences = []
batch_images, batch_regions, batch_confidences, batch_indexes = [], [], [], []
for single_img_path in images:
# ---------------------------------
# we have run pre-process in verification.
# so, this can be skipped if it is coming from verify.
for idx, single_img_path in enumerate(images):
# we have run pre-process in verification. so, skip if it is coming from verify.
target_size = model.input_shape
if detector_backend != "skip":
# Images are returned in RGB format.
img_objs = detection.extract_faces(
img_path=single_img_path,
detector_backend=detector_backend,
@ -107,6 +105,9 @@ def represent(
if len(img.shape) != 3:
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
# Convert to RGB format to keep compatability with `extract_faces`.
img = img[:, :, ::-1]
# make dummy region and confidence to keep compatibility with `extract_faces`
img_objs = [
{
@ -130,9 +131,10 @@ def represent(
for img_obj in img_objs:
if anti_spoofing is True and img_obj.get("is_real", True) is False:
raise ValueError("Spoof detected in the given image.")
img = img_obj["face"]
# bgr to rgb
# rgb to bgr
img = img[:, :, ::-1]
region = img_obj["facial_area"]
@ -151,22 +153,25 @@ def represent(
batch_images.append(img)
batch_regions.append(region)
batch_confidences.append(confidence)
batch_indexes.append(idx)
# Convert list of images to a numpy array for batch processing
batch_images = np.concatenate(batch_images, axis=0)
# Forward pass through the model for the entire batch
embeddings = model.forward(batch_images)
if len(batch_images) == 1:
embeddings = [embeddings]
for embedding, region, confidence in zip(embeddings, batch_regions, batch_confidences):
resp_objs.append(
{
"embedding": embedding,
"facial_area": region,
"face_confidence": confidence,
}
)
for idx in range(0, len(images)):
resp_obj = []
for idy, batch_index in enumerate(batch_indexes):
if idx == batch_index:
resp_obj.append(
{
"embedding": embeddings if len(batch_images) == 1 else embeddings[idy],
"facial_area": batch_regions[idy],
"face_confidence": batch_confidences[idy],
}
)
resp_objs.append(resp_obj)
return resp_objs
return resp_objs[0] if len(images) == 1 else resp_objs

View File

@ -144,26 +144,39 @@ def test_analyze_for_different_detectors():
else:
assert result["gender"]["Man"] < result["gender"]["Woman"]
def test_analyze_for_batched_image():
img = "dataset/img4.jpg"
def test_analyze_for_numpy_batched_image():
img1_path = "dataset/img4.jpg"
img2_path = "dataset/couple.jpg"
# Copy and combine the same image to create multiple faces
img = cv2.imread(img)
img = np.stack([img, img])
assert len(img.shape) == 4 # Check dimension.
assert img.shape[0] == 2 # Check batch size.
img1 = cv2.imread(img1_path)
img2 = cv2.imread(img2_path)
expected_num_faces = [1, 2]
img1 = cv2.resize(img1, (500, 500))
img2 = cv2.resize(img2, (500, 500))
img = np.stack([img1, img2])
assert len(img.shape) == 4 # Check dimension.
assert img.shape[0] == 2 # Check batch size.
demography_batch = DeepFace.analyze(img, silent=True)
# 2 image in batch, so 2 demography objects.
assert len(demography_batch) == 2
for demography_objs in demography_batch:
assert len(demography_objs) == 1 # 1 face in each image
for demography in demography_objs: # Iterate over faces
assert type(demography) == dict # Check type
for i, demography_objs in enumerate(demography_batch):
assert len(demography_objs) == expected_num_faces[i]
for demography in demography_objs: # Iterate over faces
assert isinstance(demography, dict) # Check type
assert demography["age"] > 20 and demography["age"] < 40
assert demography["dominant_gender"] == "Woman"
assert demography["dominant_gender"] in ["Woman", "Man"]
logger.info("✅ test analyze for multiple faces done")
def test_batch_detect_age_for_multiple_faces():
# Load test image and resize to model input size
img = cv2.resize(cv2.imread("dataset/img1.jpg"), (224, 224))
@ -176,6 +189,7 @@ def test_batch_detect_age_for_multiple_faces():
assert np.array_equal(int(results[0]), int(results[1]))
logger.info("✅ test batch detect age for multiple faces done")
def test_batch_detect_emotion_for_multiple_faces():
# Load test image and resize to model input size
img = cv2.resize(cv2.imread("dataset/img1.jpg"), (224, 224))
@ -187,6 +201,7 @@ def test_batch_detect_emotion_for_multiple_faces():
assert np.array_equal(results[0], results[1])
logger.info("✅ test batch detect emotion for multiple faces done")
def test_batch_detect_gender_for_multiple_faces():
# Load test image and resize to model input size
img = cv2.resize(cv2.imread("dataset/img1.jpg"), (224, 224))
@ -198,6 +213,7 @@ def test_batch_detect_gender_for_multiple_faces():
assert np.array_equal(results[0], results[1])
logger.info("✅ test batch detect gender for multiple faces done")
def test_batch_detect_race_for_multiple_faces():
# Load test image and resize to model input size
img = cv2.resize(cv2.imread("dataset/img1.jpg"), (224, 224))

View File

@ -15,7 +15,12 @@ logger = Logger()
def test_standard_represent():
img_path = "dataset/img1.jpg"
embedding_objs = DeepFace.represent(img_path)
# type should be list of dict
assert isinstance(embedding_objs, list)
for embedding_obj in embedding_objs:
assert isinstance(embedding_obj, dict)
embedding = embedding_obj["embedding"]
logger.debug(f"Function returned {len(embedding)} dimensional vector")
assert len(embedding) == 4096
@ -25,18 +30,18 @@ def test_standard_represent():
def test_standard_represent_with_io_object():
img_path = "dataset/img1.jpg"
default_embedding_objs = DeepFace.represent(img_path)
io_embedding_objs = DeepFace.represent(open(img_path, 'rb'))
io_embedding_objs = DeepFace.represent(open(img_path, "rb"))
assert default_embedding_objs == io_embedding_objs
# Confirm non-seekable io objects are handled properly
io_obj = io.BytesIO(open(img_path, 'rb').read())
io_obj = io.BytesIO(open(img_path, "rb").read())
io_obj.seek = None
no_seek_io_embedding_objs = DeepFace.represent(io_obj)
assert default_embedding_objs == no_seek_io_embedding_objs
# Confirm non-image io objects raise exceptions
with pytest.raises(ValueError, match='Failed to decode image'):
DeepFace.represent(io.BytesIO(open(r'../requirements.txt', 'rb').read()))
with pytest.raises(ValueError, match="Failed to decode image"):
DeepFace.represent(io.BytesIO(open(r"../requirements.txt", "rb").read()))
logger.info("✅ test standard represent with io object function done")
@ -57,6 +62,27 @@ def test_represent_for_skipped_detector_backend_with_image_path():
logger.info("✅ test represent function for skipped detector and image path input backend done")
def test_represent_for_preloaded_image():
face_img = "dataset/img5.jpg"
img = cv2.imread(face_img)
img_objs = DeepFace.represent(img_path=img)
# type should be list of dict
assert isinstance(img_objs, list)
assert len(img_objs) >= 1
for img_obj in img_objs:
assert isinstance(img_obj, dict)
assert "embedding" in img_obj.keys()
assert "facial_area" in img_obj.keys()
assert isinstance(img_obj["facial_area"], dict)
assert "x" in img_obj["facial_area"].keys()
assert "y" in img_obj["facial_area"].keys()
assert "w" in img_obj["facial_area"].keys()
assert "h" in img_obj["facial_area"].keys()
assert "face_confidence" in img_obj.keys()
logger.info("✅ test represent function for skipped detector and preloaded image done")
def test_represent_for_skipped_detector_backend_with_preloaded_image():
face_img = "dataset/img5.jpg"
img = cv2.imread(face_img)
@ -85,40 +111,127 @@ def test_max_faces():
assert len(results) == max_faces
@pytest.mark.parametrize("model_name", [
"VGG-Face",
"Facenet",
"SFace",
])
def test_batched_represent(model_name):
def test_represent_detector_backend():
# Results using a detection backend.
results_1 = DeepFace.represent(img_path="dataset/img1.jpg")
assert len(results_1) == 1
# Results performing face extraction first.
faces = DeepFace.extract_faces(img_path="dataset/img1.jpg", color_face='bgr')
assert len(faces) == 1
# Images sent into represent need to be in BGR format.
img = faces[0]['face']
results_2 = DeepFace.represent(img_path=img, detector_backend="skip")
assert len(results_2) == 1
# The embeddings should be the exact same for both cases.
embedding_1 = results_1[0]['embedding']
embedding_2 = results_2[0]['embedding']
assert embedding_1 == embedding_2
logger.info("✅ test represent function for consistent output.")
@pytest.mark.parametrize(
"model_name",
[
"VGG-Face",
"Facenet",
"SFace",
],
)
def test_batched_represent_for_list_input(model_name):
img_paths = [
"dataset/img1.jpg",
"dataset/img2.jpg",
"dataset/img3.jpg",
"dataset/img4.jpg",
"dataset/img5.jpg",
"dataset/couple.jpg",
]
embedding_objs = DeepFace.represent(img_path=img_paths, model_name=model_name)
assert len(embedding_objs) == len(img_paths), f"Expected {len(img_paths)} embeddings, got {len(embedding_objs)}"
expected_faces = [1, 1, 1, 1, 1, 2]
if model_name == "VGG-Face":
batched_embedding_objs = DeepFace.represent(img_path=img_paths, model_name=model_name)
# type should be list of list of dict for batch input
assert isinstance(batched_embedding_objs, list)
assert len(batched_embedding_objs) == len(
img_paths
), f"Expected {len(img_paths)} embeddings, got {len(batched_embedding_objs)}"
# the last one has two faces
for idx, embedding_objs in enumerate(batched_embedding_objs):
# type should be list of list of dict for batch input
# batched_embedding_objs was list already, embedding_objs should be list of dict
assert isinstance(embedding_objs, list)
for embedding_obj in embedding_objs:
embedding = embedding_obj["embedding"]
logger.debug(f"Function returned {len(embedding)} dimensional vector")
assert len(embedding) == 4096, f"Expected embedding of length 4096, got {len(embedding)}"
assert isinstance(embedding_obj, dict)
embedding_objs_one_by_one = [
embedding_obj
for img_path in img_paths
for embedding_obj in DeepFace.represent(img_path=img_path, model_name=model_name)
assert expected_faces[idx] == len(
embedding_objs
), f"{img_paths[idx]} has {expected_faces[idx]} faces, but got {len(embedding_objs)} embeddings!"
for idx, img_path in enumerate(img_paths):
single_embedding_objs = DeepFace.represent(img_path=img_path, model_name=model_name)
# type should be list of dict for single input
assert isinstance(single_embedding_objs, list)
for embedding_obj in single_embedding_objs:
assert isinstance(embedding_obj, dict)
assert len(single_embedding_objs) == len(batched_embedding_objs[idx])
for alpha, beta in zip(single_embedding_objs, batched_embedding_objs[idx]):
assert np.allclose(
alpha["embedding"], beta["embedding"], rtol=1e-2, atol=1e-2
), "Embeddings do not match within tolerance"
logger.info(f"✅ test batch represent function with string input for model {model_name} done")
@pytest.mark.parametrize(
"model_name",
[
"VGG-Face",
"Facenet",
"SFace",
],
)
def test_batched_represent_for_numpy_input(model_name):
img_paths = [
"dataset/img1.jpg",
"dataset/img2.jpg",
"dataset/img3.jpg",
"dataset/img4.jpg",
"dataset/img5.jpg",
"dataset/couple.jpg",
]
for embedding_obj_one_by_one, embedding_obj in zip(embedding_objs_one_by_one, embedding_objs):
assert np.allclose(
embedding_obj_one_by_one["embedding"],
embedding_obj["embedding"],
rtol=1e-2,
atol=1e-2
), "Embeddings do not match within tolerance"
expected_faces = [1, 1, 1, 1, 1, 2]
logger.info(f"✅ test batch represent function for model {model_name} done")
imgs = []
for img_path in img_paths:
img = cv2.imread(img_path)
img = cv2.resize(img, (1000, 1000))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# print(img.shape)
imgs.append(img)
imgs = np.array(imgs)
assert imgs.ndim == 4 and imgs.shape[0] == len(img_paths)
batched_embedding_objs = DeepFace.represent(img_path=imgs, model_name=model_name)
# type should be list of list of dict for batch input
assert isinstance(batched_embedding_objs, list)
for idx, batched_embedding_obj in enumerate(batched_embedding_objs):
assert isinstance(batched_embedding_obj, list)
# it also has to have the expected number of faces
assert len(batched_embedding_obj) == expected_faces[idx]
for embedding_obj in batched_embedding_obj:
assert isinstance(embedding_obj, dict)
# we should have the same number of embeddings as the number of images
assert len(batched_embedding_objs) == len(img_paths)
logger.info(f"✅ test batch represent function with numpy input for model {model_name} done")