mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
implement multi-faces detections
This commit is contained in:
parent
f36af9ffe7
commit
47733dc7a6
@ -33,21 +33,21 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
img_list = [[img1_path, img2_path]]
|
img_list = [[img1_path, img2_path]]
|
||||||
|
|
||||||
#------------------------------
|
#------------------------------
|
||||||
|
|
||||||
resp_objects = []
|
resp_objects = []
|
||||||
|
|
||||||
if model_name == 'Ensemble':
|
if model_name == 'Ensemble':
|
||||||
print("Ensemble learning enabled")
|
print("Ensemble learning enabled")
|
||||||
|
|
||||||
import lightgbm as lgb #lightgbm==2.3.1
|
import lightgbm as lgb #lightgbm==2.3.1
|
||||||
|
|
||||||
if model == None:
|
if model == None:
|
||||||
model = {}
|
model = {}
|
||||||
|
|
||||||
model_pbar = tqdm(range(0, 4), desc='Face recognition models')
|
model_pbar = tqdm(range(0, 4), desc='Face recognition models')
|
||||||
|
|
||||||
for index in model_pbar:
|
for index in model_pbar:
|
||||||
|
|
||||||
if index == 0:
|
if index == 0:
|
||||||
model_pbar.set_description("Loading VGG-Face")
|
model_pbar.set_description("Loading VGG-Face")
|
||||||
model["VGG-Face"] = VGGFace.loadModel()
|
model["VGG-Face"] = VGGFace.loadModel()
|
||||||
@ -60,55 +60,55 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
elif index == 3:
|
elif index == 3:
|
||||||
model_pbar.set_description("Loading Facebook DeepFace")
|
model_pbar.set_description("Loading Facebook DeepFace")
|
||||||
model["DeepFace"] = FbDeepFace.loadModel()
|
model["DeepFace"] = FbDeepFace.loadModel()
|
||||||
|
|
||||||
#--------------------------
|
#--------------------------
|
||||||
#validate model dictionary because it might be passed from input as pre-trained
|
#validate model dictionary because it might be passed from input as pre-trained
|
||||||
|
|
||||||
found_models = []
|
found_models = []
|
||||||
for key, value in model.items():
|
for key, value in model.items():
|
||||||
found_models.append(key)
|
found_models.append(key)
|
||||||
|
|
||||||
if ('VGG-Face' in found_models) and ('Facenet' in found_models) and ('OpenFace' in found_models) and ('DeepFace' in found_models):
|
if ('VGG-Face' in found_models) and ('Facenet' in found_models) and ('OpenFace' in found_models) and ('DeepFace' in found_models):
|
||||||
print("Ensemble learning will be applied for ", found_models," models")
|
print("Ensemble learning will be applied for ", found_models," models")
|
||||||
else:
|
else:
|
||||||
raise ValueError("You would like to apply ensemble learning and pass pre-built models but models must contain [VGG-Face, Facenet, OpenFace, DeepFace] but you passed "+found_models)
|
raise ValueError("You would like to apply ensemble learning and pass pre-built models but models must contain [VGG-Face, Facenet, OpenFace, DeepFace] but you passed "+found_models)
|
||||||
|
|
||||||
#--------------------------
|
#--------------------------
|
||||||
|
|
||||||
model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"]
|
model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"]
|
||||||
metrics = ["cosine", "euclidean", "euclidean_l2"]
|
metrics = ["cosine", "euclidean", "euclidean_l2"]
|
||||||
|
|
||||||
pbar = tqdm(range(0,len(img_list)), desc='Verification')
|
pbar = tqdm(range(0,len(img_list)), desc='Verification')
|
||||||
|
|
||||||
#for instance in img_list:
|
#for instance in img_list:
|
||||||
for index in pbar:
|
for index in pbar:
|
||||||
instance = img_list[index]
|
instance = img_list[index]
|
||||||
|
|
||||||
if type(instance) == list and len(instance) >= 2:
|
if type(instance) == list and len(instance) >= 2:
|
||||||
img1_path = instance[0]
|
img1_path = instance[0]
|
||||||
img2_path = instance[1]
|
img2_path = instance[1]
|
||||||
|
|
||||||
ensemble_features = []; ensemble_features_string = "["
|
ensemble_features = []; ensemble_features_string = "["
|
||||||
|
|
||||||
for i in model_names:
|
for i in model_names:
|
||||||
custom_model = model[i]
|
custom_model = model[i]
|
||||||
|
|
||||||
#input_shape = custom_model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = custom_model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = custom_model.layers[0].input_shape
|
input_shape = custom_model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
|
|
||||||
img1 = functions.preprocess_face(img = img1_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img1 = functions.preprocess_face(img = img1_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
img2 = functions.preprocess_face(img = img2_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img2 = functions.preprocess_face(img = img2_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
|
|
||||||
img1_representation = custom_model.predict(img1)[0,:]
|
img1_representation = custom_model.predict(img1)[0,:]
|
||||||
img2_representation = custom_model.predict(img2)[0,:]
|
img2_representation = custom_model.predict(img2)[0,:]
|
||||||
|
|
||||||
for j in metrics:
|
for j in metrics:
|
||||||
if j == 'cosine':
|
if j == 'cosine':
|
||||||
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||||
@ -116,49 +116,49 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
||||||
elif j == 'euclidean_l2':
|
elif j == 'euclidean_l2':
|
||||||
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
||||||
|
|
||||||
if i == 'OpenFace' and j == 'euclidean': #this returns same with OpenFace - euclidean_l2
|
if i == 'OpenFace' and j == 'euclidean': #this returns same with OpenFace - euclidean_l2
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
|
|
||||||
ensemble_features.append(distance)
|
ensemble_features.append(distance)
|
||||||
|
|
||||||
if len(ensemble_features) > 1:
|
if len(ensemble_features) > 1:
|
||||||
ensemble_features_string += ", "
|
ensemble_features_string += ", "
|
||||||
ensemble_features_string += str(distance)
|
ensemble_features_string += str(distance)
|
||||||
|
|
||||||
#print("ensemble_features: ", ensemble_features)
|
#print("ensemble_features: ", ensemble_features)
|
||||||
ensemble_features_string += "]"
|
ensemble_features_string += "]"
|
||||||
|
|
||||||
#-------------------------------
|
#-------------------------------
|
||||||
#find deepface path
|
#find deepface path
|
||||||
|
|
||||||
home = str(Path.home())
|
home = str(Path.home())
|
||||||
|
|
||||||
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
||||||
print("face-recognition-ensemble-model.txt will be downloaded...")
|
print("face-recognition-ensemble-model.txt will be downloaded...")
|
||||||
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
||||||
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
gdown.download(url, output, quiet=False)
|
gdown.download(url, output, quiet=False)
|
||||||
|
|
||||||
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
|
|
||||||
#print(ensemble_model_path)
|
#print(ensemble_model_path)
|
||||||
|
|
||||||
#-------------------------------
|
#-------------------------------
|
||||||
|
|
||||||
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
||||||
|
|
||||||
prediction = deepface_ensemble.predict(np.expand_dims(np.array(ensemble_features), axis=0))[0]
|
prediction = deepface_ensemble.predict(np.expand_dims(np.array(ensemble_features), axis=0))[0]
|
||||||
|
|
||||||
verified = np.argmax(prediction) == 1
|
verified = np.argmax(prediction) == 1
|
||||||
if verified: identified = "true"
|
if verified: identified = "true"
|
||||||
else: identified = "false"
|
else: identified = "false"
|
||||||
|
|
||||||
score = prediction[np.argmax(prediction)]
|
score = prediction[np.argmax(prediction)]
|
||||||
|
|
||||||
#print("verified: ", verified,", score: ", score)
|
#print("verified: ", verified,", score: ", score)
|
||||||
|
|
||||||
resp_obj = "{"
|
resp_obj = "{"
|
||||||
resp_obj += "\"verified\": "+identified
|
resp_obj += "\"verified\": "+identified
|
||||||
resp_obj += ", \"score\": "+str(score)
|
resp_obj += ", \"score\": "+str(score)
|
||||||
@ -166,18 +166,18 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
resp_obj += ", \"model\": [\"VGG-Face\", \"Facenet\", \"OpenFace\", \"DeepFace\"]"
|
resp_obj += ", \"model\": [\"VGG-Face\", \"Facenet\", \"OpenFace\", \"DeepFace\"]"
|
||||||
resp_obj += ", \"similarity_metric\": [\"cosine\", \"euclidean\", \"euclidean_l2\"]"
|
resp_obj += ", \"similarity_metric\": [\"cosine\", \"euclidean\", \"euclidean_l2\"]"
|
||||||
resp_obj += "}"
|
resp_obj += "}"
|
||||||
|
|
||||||
#print(resp_obj)
|
#print(resp_obj)
|
||||||
|
|
||||||
resp_obj = json.loads(resp_obj) #string to json
|
resp_obj = json.loads(resp_obj) #string to json
|
||||||
|
|
||||||
if bulkProcess == True:
|
if bulkProcess == True:
|
||||||
resp_objects.append(resp_obj)
|
resp_objects.append(resp_obj)
|
||||||
else:
|
else:
|
||||||
return resp_obj
|
return resp_obj
|
||||||
|
|
||||||
#-------------------------------
|
#-------------------------------
|
||||||
|
|
||||||
if bulkProcess == True:
|
if bulkProcess == True:
|
||||||
resp_obj = "{"
|
resp_obj = "{"
|
||||||
|
|
||||||
@ -191,13 +191,13 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
resp_obj += "}"
|
resp_obj += "}"
|
||||||
resp_obj = json.loads(resp_obj)
|
resp_obj = json.loads(resp_obj)
|
||||||
return resp_obj
|
return resp_obj
|
||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
#ensemble learning block end
|
#ensemble learning block end
|
||||||
#--------------------------------
|
#--------------------------------
|
||||||
#ensemble learning disabled
|
#ensemble learning disabled
|
||||||
|
|
||||||
if model == None:
|
if model == None:
|
||||||
if model_name == 'VGG-Face':
|
if model_name == 'VGG-Face':
|
||||||
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
||||||
@ -214,11 +214,11 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
elif model_name == 'DeepFace':
|
elif model_name == 'DeepFace':
|
||||||
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
||||||
model = FbDeepFace.loadModel()
|
model = FbDeepFace.loadModel()
|
||||||
|
|
||||||
elif model_name == 'DeepID':
|
elif model_name == 'DeepID':
|
||||||
print("Using DeepID2 model backend", distance_metric,"distance.")
|
print("Using DeepID2 model backend", distance_metric,"distance.")
|
||||||
model = DeepID.loadModel()
|
model = DeepID.loadModel()
|
||||||
|
|
||||||
elif model_name == 'Dlib':
|
elif model_name == 'Dlib':
|
||||||
print("Using Dlib ResNet model backend", distance_metric,"distance.")
|
print("Using Dlib ResNet model backend", distance_metric,"distance.")
|
||||||
from deepface.basemodels.DlibResNet import DlibResNet #this is not a must because it is very huge.
|
from deepface.basemodels.DlibResNet import DlibResNet #this is not a must because it is very huge.
|
||||||
@ -232,18 +232,18 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
#------------------------------
|
#------------------------------
|
||||||
#face recognition models have different size of inputs
|
#face recognition models have different size of inputs
|
||||||
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
if model_name == 'Dlib': #this is not a regular keras model
|
if model_name == 'Dlib': #this is not a regular keras model
|
||||||
input_shape = (150, 150, 3)
|
input_shape = (150, 150, 3)
|
||||||
|
|
||||||
else: #keras based models
|
else: #keras based models
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
input_shape_x = input_shape[0]
|
input_shape_x = input_shape[0]
|
||||||
input_shape_y = input_shape[1]
|
input_shape_y = input_shape[1]
|
||||||
|
|
||||||
@ -253,17 +253,17 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
threshold = functions.findThreshold(model_name, distance_metric)
|
threshold = functions.findThreshold(model_name, distance_metric)
|
||||||
|
|
||||||
#------------------------------
|
#------------------------------
|
||||||
|
|
||||||
#calling deepface in a for loop causes lots of progress bars. this prevents it.
|
#calling deepface in a for loop causes lots of progress bars. this prevents it.
|
||||||
disable_option = False if len(img_list) > 1 else True
|
disable_option = False if len(img_list) > 1 else True
|
||||||
|
|
||||||
pbar = tqdm(range(0,len(img_list)), desc='Verification', disable = disable_option)
|
pbar = tqdm(range(0,len(img_list)), desc='Verification', disable = disable_option)
|
||||||
|
|
||||||
#for instance in img_list:
|
#for instance in img_list:
|
||||||
for index in pbar:
|
for index in pbar:
|
||||||
|
|
||||||
instance = img_list[index]
|
instance = img_list[index]
|
||||||
|
|
||||||
if type(instance) == list and len(instance) >= 2:
|
if type(instance) == list and len(instance) >= 2:
|
||||||
img1_path = instance[0]
|
img1_path = instance[0]
|
||||||
img2_path = instance[1]
|
img2_path = instance[1]
|
||||||
@ -271,8 +271,8 @@ def verify(img1_path, img2_path = '', model_name ='VGG-Face', distance_metric =
|
|||||||
#----------------------
|
#----------------------
|
||||||
#crop and align faces
|
#crop and align faces
|
||||||
|
|
||||||
img1 = functions.preprocess_face(img=img1_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img1 = functions.preprocess_face(img=img1_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
img2 = functions.preprocess_face(img=img2_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img2 = functions.preprocess_face(img=img2_path, target_size=(input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
|
|
||||||
#----------------------
|
#----------------------
|
||||||
#find embeddings
|
#find embeddings
|
||||||
@ -358,7 +358,8 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True, detec
|
|||||||
|
|
||||||
#if a specific target is not passed, then find them all
|
#if a specific target is not passed, then find them all
|
||||||
if len(actions) == 0:
|
if len(actions) == 0:
|
||||||
actions= ['emotion', 'age', 'gender', 'race']
|
# actions= ['emotion', 'age', 'gender', 'race']
|
||||||
|
actions = ['emotion', 'age', 'gender']
|
||||||
|
|
||||||
#print("Actions to do: ", actions)
|
#print("Actions to do: ", actions)
|
||||||
|
|
||||||
@ -394,178 +395,175 @@ def analyze(img_path, actions = [], models = {}, enforce_detection = True, detec
|
|||||||
#---------------------------------
|
#---------------------------------
|
||||||
|
|
||||||
resp_objects = []
|
resp_objects = []
|
||||||
|
|
||||||
disable_option = False if len(img_paths) > 1 else True
|
disable_option = False if len(img_paths) > 1 else True
|
||||||
|
|
||||||
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing', disable = disable_option)
|
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing', disable = disable_option)
|
||||||
|
|
||||||
#for img_path in img_paths:
|
#for img_path in img_paths:
|
||||||
for j in global_pbar:
|
for j in global_pbar:
|
||||||
img_path = img_paths[j]
|
img_path = img_paths[j]
|
||||||
|
|
||||||
resp_obj = "{"
|
|
||||||
|
|
||||||
disable_option = False if len(actions) > 1 else True
|
disable_option = False if len(actions) > 1 else True
|
||||||
|
|
||||||
pbar = tqdm(range(0,len(actions)), desc='Finding actions', disable = disable_option)
|
pbar = tqdm(range(0,len(actions)), desc='Finding actions', disable = disable_option)
|
||||||
|
|
||||||
action_idx = 0
|
# preprocess images
|
||||||
img_224 = None # Set to prevent re-detection
|
emotion_imgs = functions.preprocess_face(img=img_path, target_size=(48, 48), grayscale=True, enforce_detection=enforce_detection, detector_backend=detector_backend)['processed']
|
||||||
#for action in actions:
|
imgs_224 = functions.preprocess_face(img_path, target_size=(224, 224), grayscale=False, enforce_detection=enforce_detection) # just emotion model expects grayscale images
|
||||||
for index in pbar:
|
orig_faces = imgs_224['original']
|
||||||
action = actions[index]
|
imgs_224 = imgs_224['processed']
|
||||||
pbar.set_description("Action: %s" % (action))
|
|
||||||
|
|
||||||
if action_idx > 0:
|
for i in range(len(imgs_224)):
|
||||||
resp_obj += ", "
|
|
||||||
|
|
||||||
if action == 'emotion':
|
resp_obj = "{"
|
||||||
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
action_idx = 0
|
||||||
img = functions.preprocess_face(img = img_path, target_size = (48, 48), grayscale = True, enforce_detection = enforce_detection, detector_backend = detector_backend)
|
|
||||||
|
|
||||||
emotion_predictions = emotion_model.predict(img)[0,:]
|
#for action in actions:
|
||||||
|
for index in pbar:
|
||||||
|
action = actions[index]
|
||||||
|
pbar.set_description("Action: %s" % (action))
|
||||||
|
|
||||||
sum_of_predictions = emotion_predictions.sum()
|
if action_idx > 0:
|
||||||
|
resp_obj += ", "
|
||||||
|
|
||||||
emotion_obj = "\"emotion\": {"
|
if action == 'emotion':
|
||||||
for i in range(0, len(emotion_labels)):
|
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
|
||||||
emotion_label = emotion_labels[i]
|
|
||||||
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
|
||||||
|
|
||||||
if i > 0: emotion_obj += ", "
|
emotion_predictions = emotion_model.predict(emotion_imgs[i])[0,:]
|
||||||
|
|
||||||
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
|
sum_of_predictions = emotion_predictions.sum()
|
||||||
|
|
||||||
emotion_obj += "}"
|
emotion_obj = "\"emotion\": {"
|
||||||
|
for i in range(0, len(emotion_labels)):
|
||||||
|
emotion_label = emotion_labels[i]
|
||||||
|
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
||||||
|
|
||||||
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
|
if i > 0: emotion_obj += ", "
|
||||||
|
|
||||||
resp_obj += emotion_obj
|
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
|
||||||
|
|
||||||
elif action == 'age':
|
emotion_obj += "}"
|
||||||
if img_224 is None:
|
|
||||||
img_224 = functions.preprocess_face(img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection) #just emotion model expects grayscale images
|
|
||||||
#print("age prediction")
|
|
||||||
age_predictions = age_model.predict(img_224)[0,:]
|
|
||||||
apparent_age = Age.findApparentAge(age_predictions)
|
|
||||||
|
|
||||||
resp_obj += "\"age\": %s" % (apparent_age)
|
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
|
||||||
|
|
||||||
elif action == 'gender':
|
resp_obj += emotion_obj
|
||||||
if img_224 is None:
|
|
||||||
img_224 = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend) #just emotion model expects grayscale images
|
|
||||||
#print("gender prediction")
|
|
||||||
|
|
||||||
gender_prediction = gender_model.predict(img_224)[0,:]
|
elif action == 'age':
|
||||||
|
#print("age prediction")
|
||||||
|
age_predictions = age_model.predict(imgs_224[i])[0,:]
|
||||||
|
apparent_age = Age.findApparentAge(age_predictions)
|
||||||
|
|
||||||
if np.argmax(gender_prediction) == 0:
|
resp_obj += "\"age\": %s" % (apparent_age)
|
||||||
gender = "Woman"
|
|
||||||
elif np.argmax(gender_prediction) == 1:
|
|
||||||
gender = "Man"
|
|
||||||
|
|
||||||
resp_obj += "\"gender\": \"%s\"" % (gender)
|
elif action == 'gender':
|
||||||
|
#print("gender prediction")
|
||||||
|
|
||||||
elif action == 'race':
|
gender_prediction = gender_model.predict(imgs_224[i])[0,:]
|
||||||
if img_224 is None:
|
|
||||||
img_224 = functions.preprocess_face(img = img_path, target_size = (224, 224), grayscale = False, enforce_detection = enforce_detection, detector_backend = detector_backend) #just emotion model expects grayscale images
|
|
||||||
race_predictions = race_model.predict(img_224)[0,:]
|
|
||||||
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
|
||||||
|
|
||||||
sum_of_predictions = race_predictions.sum()
|
if np.argmax(gender_prediction) == 0:
|
||||||
|
gender = "Woman"
|
||||||
|
elif np.argmax(gender_prediction) == 1:
|
||||||
|
gender = "Man"
|
||||||
|
|
||||||
race_obj = "\"race\": {"
|
resp_obj += "\"gender\": \"%s\"" % (gender)
|
||||||
for i in range(0, len(race_labels)):
|
|
||||||
race_label = race_labels[i]
|
|
||||||
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
|
||||||
|
|
||||||
if i > 0: race_obj += ", "
|
elif action == 'race':
|
||||||
|
race_predictions = race_model.predict(imgs_224[i])[0,:]
|
||||||
|
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
||||||
|
|
||||||
race_obj += "\"%s\": %s" % (race_label, race_prediction)
|
sum_of_predictions = race_predictions.sum()
|
||||||
|
|
||||||
race_obj += "}"
|
race_obj = "\"race\": {"
|
||||||
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
|
for i in range(0, len(race_labels)):
|
||||||
|
race_label = race_labels[i]
|
||||||
|
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
||||||
|
|
||||||
resp_obj += race_obj
|
if i > 0: race_obj += ", "
|
||||||
|
|
||||||
action_idx = action_idx + 1
|
race_obj += "\"%s\": %s" % (race_label, race_prediction)
|
||||||
|
|
||||||
resp_obj += "}"
|
race_obj += "}"
|
||||||
|
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
|
||||||
|
|
||||||
resp_obj = json.loads(resp_obj)
|
resp_obj += race_obj
|
||||||
|
|
||||||
|
action_idx = action_idx + 1
|
||||||
|
|
||||||
|
resp_obj += "}"
|
||||||
|
|
||||||
|
resp_obj = json.loads(resp_obj)
|
||||||
|
|
||||||
if bulkProcess == True:
|
|
||||||
resp_objects.append(resp_obj)
|
resp_objects.append(resp_obj)
|
||||||
else:
|
|
||||||
return resp_obj
|
|
||||||
|
|
||||||
if bulkProcess == True:
|
# resp_obj = "{"
|
||||||
resp_obj = "{"
|
#
|
||||||
|
# for i in range(0, len(resp_objects)):
|
||||||
|
# resp_item = json.dumps(resp_objects[i])
|
||||||
|
#
|
||||||
|
# if i > 0:
|
||||||
|
# resp_obj += ", "
|
||||||
|
#
|
||||||
|
# resp_obj += "\"instance_"+str(i+1)+"\": "+resp_item
|
||||||
|
# resp_obj += "}"
|
||||||
|
# resp_obj = json.loads(resp_obj)
|
||||||
|
# return resp_obj
|
||||||
|
return resp_objects, orig_faces
|
||||||
|
|
||||||
for i in range(0, len(resp_objects)):
|
def detectFace(img_path, detector_backend='opencv'):
|
||||||
resp_item = json.dumps(resp_objects[i])
|
imgs = functions.preprocess_face(img=img_path, detector_backend=detector_backend)['processed'] #preprocess_face returns (1, 224, 224, 3)
|
||||||
|
for i in range(len(imgs)):
|
||||||
if i > 0:
|
imgs[i] = imgs[i][0][:, :, ::-1] #bgr to rgb
|
||||||
resp_obj += ", "
|
return imgs
|
||||||
|
|
||||||
resp_obj += "\"instance_"+str(i+1)+"\": "+resp_item
|
|
||||||
resp_obj += "}"
|
|
||||||
resp_obj = json.loads(resp_obj)
|
|
||||||
return resp_obj
|
|
||||||
#return resp_objects
|
|
||||||
|
|
||||||
|
|
||||||
def detectFace(img_path, detector_backend = 'opencv'):
|
|
||||||
img = functions.preprocess_face(img = img_path, detector_backend = detector_backend)[0] #preprocess_face returns (1, 224, 224, 3)
|
|
||||||
return img[:, :, ::-1] #bgr to rgb
|
|
||||||
|
|
||||||
def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv'):
|
def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv'):
|
||||||
|
|
||||||
model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace']
|
model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace']
|
||||||
metric_names = ['cosine', 'euclidean', 'euclidean_l2']
|
metric_names = ['cosine', 'euclidean', 'euclidean_l2']
|
||||||
|
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
|
|
||||||
if type(img_path) == list:
|
if type(img_path) == list:
|
||||||
bulkProcess = True
|
bulkProcess = True
|
||||||
img_paths = img_path.copy()
|
img_paths = img_path.copy()
|
||||||
else:
|
else:
|
||||||
bulkProcess = False
|
bulkProcess = False
|
||||||
img_paths = [img_path]
|
img_paths = [img_path]
|
||||||
|
|
||||||
if os.path.isdir(db_path) == True:
|
if os.path.isdir(db_path) == True:
|
||||||
|
|
||||||
#---------------------------------------
|
#---------------------------------------
|
||||||
|
|
||||||
if model == None:
|
if model == None:
|
||||||
if model_name == 'VGG-Face':
|
if model_name == 'VGG-Face':
|
||||||
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
print("Using VGG-Face model backend and", distance_metric, "distance.")
|
||||||
model = VGGFace.loadModel()
|
model = VGGFace.loadModel()
|
||||||
elif model_name == 'OpenFace':
|
elif model_name == 'OpenFace':
|
||||||
print("Using OpenFace model backend", distance_metric,"distance.")
|
print("Using OpenFace model backend", distance_metric, "distance.")
|
||||||
model = OpenFace.loadModel()
|
model = OpenFace.loadModel()
|
||||||
elif model_name == 'Facenet':
|
elif model_name == 'Facenet':
|
||||||
print("Using Facenet model backend", distance_metric,"distance.")
|
print("Using Facenet model backend", distance_metric, "distance.")
|
||||||
model = Facenet.loadModel()
|
model = Facenet.loadModel()
|
||||||
elif model_name == 'DeepFace':
|
elif model_name == 'DeepFace':
|
||||||
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
print("Using FB DeepFace model backend", distance_metric, "distance.")
|
||||||
model = FbDeepFace.loadModel()
|
model = FbDeepFace.loadModel()
|
||||||
elif model_name == 'DeepID':
|
elif model_name == 'DeepID':
|
||||||
print("Using DeepID model backend", distance_metric,"distance.")
|
print("Using DeepID model backend", distance_metric, "distance.")
|
||||||
model = DeepID.loadModel()
|
model = DeepID.loadModel()
|
||||||
elif model_name == 'Dlib':
|
elif model_name == 'Dlib':
|
||||||
print("Using Dlib ResNet model backend", distance_metric,"distance.")
|
print("Using Dlib ResNet model backend", distance_metric, "distance.")
|
||||||
from deepface.basemodels.DlibResNet import DlibResNet #this is not a must because it is very huge
|
from deepface.basemodels.DlibResNet import DlibResNet #this is not a must because it is very huge
|
||||||
model = DlibResNet()
|
model = DlibResNet()
|
||||||
elif model_name == 'Ensemble':
|
elif model_name == 'Ensemble':
|
||||||
print("Ensemble learning enabled")
|
print("Ensemble learning enabled")
|
||||||
#TODO: include DeepID in ensemble method
|
#TODO: include DeepID in ensemble method
|
||||||
|
|
||||||
import lightgbm as lgb #lightgbm==2.3.1
|
import lightgbm as lgb #lightgbm==2.3.1
|
||||||
|
|
||||||
models = {}
|
models = {}
|
||||||
|
|
||||||
pbar = tqdm(range(0, len(model_names)), desc='Face recognition models')
|
pbar = tqdm(range(0, len(model_names)), desc='Face recognition models')
|
||||||
|
|
||||||
for index in pbar:
|
for index in pbar:
|
||||||
if index == 0:
|
if index == 0:
|
||||||
pbar.set_description("Loading VGG-Face")
|
pbar.set_description("Loading VGG-Face")
|
||||||
@ -579,181 +577,181 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
elif index == 3:
|
elif index == 3:
|
||||||
pbar.set_description("Loading DeepFace")
|
pbar.set_description("Loading DeepFace")
|
||||||
models['DeepFace'] = FbDeepFace.loadModel()
|
models['DeepFace'] = FbDeepFace.loadModel()
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError("Invalid model_name passed - ", model_name)
|
raise ValueError("Invalid model_name passed - ", model_name)
|
||||||
else: #model != None
|
else: #model != None
|
||||||
print("Already built model is passed")
|
print("Already built model is passed")
|
||||||
|
|
||||||
if model_name == 'Ensemble':
|
if model_name == 'Ensemble':
|
||||||
|
|
||||||
import lightgbm as lgb #lightgbm==2.3.1
|
import lightgbm as lgb #lightgbm==2.3.1
|
||||||
|
|
||||||
#validate model dictionary because it might be passed from input as pre-trained
|
#validate model dictionary because it might be passed from input as pre-trained
|
||||||
|
|
||||||
found_models = []
|
found_models = []
|
||||||
for key, value in model.items():
|
for key, value in model.items():
|
||||||
found_models.append(key)
|
found_models.append(key)
|
||||||
|
|
||||||
if ('VGG-Face' in found_models) and ('Facenet' in found_models) and ('OpenFace' in found_models) and ('DeepFace' in found_models):
|
if ('VGG-Face' in found_models) and ('Facenet' in found_models) and ('OpenFace' in found_models) and ('DeepFace' in found_models):
|
||||||
print("Ensemble learning will be applied for ", found_models," models")
|
print("Ensemble learning will be applied for ", found_models," models")
|
||||||
else:
|
else:
|
||||||
raise ValueError("You would like to apply ensemble learning and pass pre-built models but models must contain [VGG-Face, Facenet, OpenFace, DeepFace] but you passed "+found_models)
|
raise ValueError("You would like to apply ensemble learning and pass pre-built models but models must contain [VGG-Face, Facenet, OpenFace, DeepFace] but you passed "+found_models)
|
||||||
|
|
||||||
models = model.copy()
|
models = model.copy()
|
||||||
|
|
||||||
#threshold = functions.findThreshold(model_name, distance_metric)
|
#threshold = functions.findThreshold(model_name, distance_metric)
|
||||||
|
|
||||||
#---------------------------------------
|
#---------------------------------------
|
||||||
|
|
||||||
file_name = "representations_%s.pkl" % (model_name)
|
file_name = "representations_%s.pkl" % (model_name)
|
||||||
file_name = file_name.replace("-", "_").lower()
|
file_name = file_name.replace("-", "_").lower()
|
||||||
|
|
||||||
if path.exists(db_path+"/"+file_name):
|
if path.exists(db_path+"/"+file_name):
|
||||||
|
|
||||||
print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")
|
print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")
|
||||||
|
|
||||||
f = open(db_path+'/'+file_name, 'rb')
|
f = open(db_path+'/'+file_name, 'rb')
|
||||||
representations = pickle.load(f)
|
representations = pickle.load(f)
|
||||||
|
|
||||||
print("There are ", len(representations)," representations found in ",file_name)
|
print("There are ", len(representations)," representations found in ",file_name)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
employees = []
|
employees = []
|
||||||
|
|
||||||
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
||||||
for file in f:
|
for file in f:
|
||||||
if ('.jpg' in file):
|
if ('.jpg' in file):
|
||||||
exact_path = r + "/" + file
|
exact_path = r + "/" + file
|
||||||
employees.append(exact_path)
|
employees.append(exact_path)
|
||||||
|
|
||||||
if len(employees) == 0:
|
if len(employees) == 0:
|
||||||
raise ValueError("There is no image in ", db_path," folder!")
|
raise ValueError("There is no image in ", db_path," folder!")
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
#find representations for db images
|
#find representations for db images
|
||||||
|
|
||||||
representations = []
|
representations = []
|
||||||
|
|
||||||
pbar = tqdm(range(0,len(employees)), desc='Finding representations')
|
pbar = tqdm(range(0,len(employees)), desc='Finding representations')
|
||||||
|
|
||||||
#for employee in employees:
|
#for employee in employees:
|
||||||
for index in pbar:
|
for index in pbar:
|
||||||
employee = employees[index]
|
employee = employees[index]
|
||||||
|
|
||||||
if model_name != 'Ensemble':
|
if model_name != 'Ensemble':
|
||||||
|
|
||||||
if model_name == 'Dlib': #non-keras model
|
if model_name == 'Dlib': #non-keras model
|
||||||
input_shape = (150, 150, 3)
|
input_shape = (150, 150, 3)
|
||||||
else:
|
else:
|
||||||
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
#---------------------
|
#---------------------
|
||||||
|
|
||||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
|
|
||||||
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
representation = model.predict(img)[0,:]
|
representation = model.predict(img)[0,:]
|
||||||
|
|
||||||
instance = []
|
instance = []
|
||||||
instance.append(employee)
|
instance.append(employee)
|
||||||
instance.append(representation)
|
instance.append(representation)
|
||||||
|
|
||||||
else: #ensemble learning
|
else: #ensemble learning
|
||||||
|
|
||||||
instance = []
|
instance = []
|
||||||
instance.append(employee)
|
instance.append(employee)
|
||||||
|
|
||||||
for j in model_names:
|
for j in model_names:
|
||||||
ensemble_model = models[j]
|
ensemble_model = models[j]
|
||||||
|
|
||||||
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = ensemble_model.layers[0].input_shape
|
input_shape = ensemble_model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
|
|
||||||
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = employee, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
representation = ensemble_model.predict(img)[0,:]
|
representation = ensemble_model.predict(img)[0,:]
|
||||||
instance.append(representation)
|
instance.append(representation)
|
||||||
|
|
||||||
#-------------------------------
|
#-------------------------------
|
||||||
|
|
||||||
representations.append(instance)
|
representations.append(instance)
|
||||||
|
|
||||||
f = open(db_path+'/'+file_name, "wb")
|
f = open(db_path+'/'+file_name, "wb")
|
||||||
pickle.dump(representations, f)
|
pickle.dump(representations, f)
|
||||||
f.close()
|
f.close()
|
||||||
|
|
||||||
print("Representations stored in ",db_path,"/",file_name," file. Please delete this file when you add new identities in your database.")
|
print("Representations stored in ",db_path,"/",file_name," file. Please delete this file when you add new identities in your database.")
|
||||||
|
|
||||||
#----------------------------
|
#----------------------------
|
||||||
#we got representations for database
|
#we got representations for database
|
||||||
|
|
||||||
if model_name != 'Ensemble':
|
if model_name != 'Ensemble':
|
||||||
df = pd.DataFrame(representations, columns = ["identity", "representation"])
|
df = pd.DataFrame(representations, columns = ["identity", "representation"])
|
||||||
else: #ensemble learning
|
else: #ensemble learning
|
||||||
df = pd.DataFrame(representations, columns = ["identity", "VGG-Face_representation", "Facenet_representation", "OpenFace_representation", "DeepFace_representation"])
|
df = pd.DataFrame(representations, columns = ["identity", "VGG-Face_representation", "Facenet_representation", "OpenFace_representation", "DeepFace_representation"])
|
||||||
|
|
||||||
df_base = df.copy()
|
df_base = df.copy()
|
||||||
|
|
||||||
resp_obj = []
|
resp_obj = []
|
||||||
|
|
||||||
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing')
|
global_pbar = tqdm(range(0,len(img_paths)), desc='Analyzing')
|
||||||
for j in global_pbar:
|
for j in global_pbar:
|
||||||
img_path = img_paths[j]
|
img_path = img_paths[j]
|
||||||
|
|
||||||
#find representation for passed image
|
#find representation for passed image
|
||||||
|
|
||||||
if model_name == 'Ensemble':
|
if model_name == 'Ensemble':
|
||||||
for j in model_names:
|
for j in model_names:
|
||||||
ensemble_model = models[j]
|
ensemble_model = models[j]
|
||||||
|
|
||||||
#input_shape = ensemble_model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = ensemble_model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = ensemble_model.layers[0].input_shape
|
input_shape = ensemble_model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
img = functions.preprocess_face(img = img_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = img_path, target_size = input_shape, enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
target_representation = ensemble_model.predict(img)[0,:]
|
target_representation = ensemble_model.predict(img)[0,:]
|
||||||
|
|
||||||
for k in metric_names:
|
for k in metric_names:
|
||||||
distances = []
|
distances = []
|
||||||
for index, instance in df.iterrows():
|
for index, instance in df.iterrows():
|
||||||
source_representation = instance["%s_representation" % (j)]
|
source_representation = instance["%s_representation" % (j)]
|
||||||
|
|
||||||
if k == 'cosine':
|
if k == 'cosine':
|
||||||
distance = dst.findCosineDistance(source_representation, target_representation)
|
distance = dst.findCosineDistance(source_representation, target_representation)
|
||||||
elif k == 'euclidean':
|
elif k == 'euclidean':
|
||||||
distance = dst.findEuclideanDistance(source_representation, target_representation)
|
distance = dst.findEuclideanDistance(source_representation, target_representation)
|
||||||
elif k == 'euclidean_l2':
|
elif k == 'euclidean_l2':
|
||||||
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
|
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
|
||||||
|
|
||||||
distances.append(distance)
|
distances.append(distance)
|
||||||
|
|
||||||
if j == 'OpenFace' and k == 'euclidean':
|
if j == 'OpenFace' and k == 'euclidean':
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
df["%s_%s" % (j, k)] = distances
|
df["%s_%s" % (j, k)] = distances
|
||||||
|
|
||||||
#----------------------------------
|
#----------------------------------
|
||||||
|
|
||||||
feature_names = []
|
feature_names = []
|
||||||
for j in model_names:
|
for j in model_names:
|
||||||
for k in metric_names:
|
for k in metric_names:
|
||||||
@ -762,73 +760,73 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
else:
|
else:
|
||||||
feature = '%s_%s' % (j, k)
|
feature = '%s_%s' % (j, k)
|
||||||
feature_names.append(feature)
|
feature_names.append(feature)
|
||||||
|
|
||||||
#print(df[feature_names].head())
|
#print(df[feature_names].head())
|
||||||
|
|
||||||
x = df[feature_names].values
|
x = df[feature_names].values
|
||||||
|
|
||||||
#----------------------------------
|
#----------------------------------
|
||||||
#lightgbm model
|
#lightgbm model
|
||||||
home = str(Path.home())
|
home = str(Path.home())
|
||||||
|
|
||||||
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
if os.path.isfile(home+'/.deepface/weights/face-recognition-ensemble-model.txt') != True:
|
||||||
print("face-recognition-ensemble-model.txt will be downloaded...")
|
print("face-recognition-ensemble-model.txt will be downloaded...")
|
||||||
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
url = 'https://raw.githubusercontent.com/serengil/deepface/master/deepface/models/face-recognition-ensemble-model.txt'
|
||||||
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
output = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
gdown.download(url, output, quiet=False)
|
gdown.download(url, output, quiet=False)
|
||||||
|
|
||||||
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
ensemble_model_path = home+'/.deepface/weights/face-recognition-ensemble-model.txt'
|
||||||
|
|
||||||
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
deepface_ensemble = lgb.Booster(model_file = ensemble_model_path)
|
||||||
|
|
||||||
y = deepface_ensemble.predict(x)
|
y = deepface_ensemble.predict(x)
|
||||||
|
|
||||||
verified_labels = []; scores = []
|
verified_labels = []; scores = []
|
||||||
for i in y:
|
for i in y:
|
||||||
verified = np.argmax(i) == 1
|
verified = np.argmax(i) == 1
|
||||||
score = i[np.argmax(i)]
|
score = i[np.argmax(i)]
|
||||||
|
|
||||||
verified_labels.append(verified)
|
verified_labels.append(verified)
|
||||||
scores.append(score)
|
scores.append(score)
|
||||||
|
|
||||||
df['verified'] = verified_labels
|
df['verified'] = verified_labels
|
||||||
df['score'] = scores
|
df['score'] = scores
|
||||||
|
|
||||||
df = df[df.verified == True]
|
df = df[df.verified == True]
|
||||||
#df = df[df.score > 0.99] #confidence score
|
#df = df[df.score > 0.99] #confidence score
|
||||||
df = df.sort_values(by = ["score"], ascending=False).reset_index(drop=True)
|
df = df.sort_values(by = ["score"], ascending=False).reset_index(drop=True)
|
||||||
df = df[['identity', 'verified', 'score']]
|
df = df[['identity', 'verified', 'score']]
|
||||||
|
|
||||||
resp_obj.append(df)
|
resp_obj.append(df)
|
||||||
df = df_base.copy() #restore df for the next iteration
|
df = df_base.copy() #restore df for the next iteration
|
||||||
|
|
||||||
#----------------------------------
|
#----------------------------------
|
||||||
|
|
||||||
if model_name != 'Ensemble':
|
if model_name != 'Ensemble':
|
||||||
|
|
||||||
if model_name == 'Dlib': #non-keras model
|
if model_name == 'Dlib': #non-keras model
|
||||||
input_shape = (150, 150, 3)
|
input_shape = (150, 150, 3)
|
||||||
else:
|
else:
|
||||||
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
#input_shape = model.layers[0].input_shape[1:3] #my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||||
|
|
||||||
input_shape = model.layers[0].input_shape
|
input_shape = model.layers[0].input_shape
|
||||||
|
|
||||||
if type(input_shape) == list:
|
if type(input_shape) == list:
|
||||||
input_shape = input_shape[0][1:3]
|
input_shape = input_shape[0][1:3]
|
||||||
else:
|
else:
|
||||||
input_shape = input_shape[1:3]
|
input_shape = input_shape[1:3]
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
|
|
||||||
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
||||||
|
|
||||||
img = functions.preprocess_face(img = img_path, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)
|
img = functions.preprocess_face(img = img_path, target_size = (input_shape_y, input_shape_x), enforce_detection = enforce_detection, detector_backend = detector_backend)['processed']
|
||||||
target_representation = model.predict(img)[0,:]
|
target_representation = model.predict(img)[0,:]
|
||||||
|
|
||||||
distances = []
|
distances = []
|
||||||
for index, instance in df.iterrows():
|
for index, instance in df.iterrows():
|
||||||
source_representation = instance["representation"]
|
source_representation = instance["representation"]
|
||||||
|
|
||||||
if distance_metric == 'cosine':
|
if distance_metric == 'cosine':
|
||||||
distance = dst.findCosineDistance(source_representation, target_representation)
|
distance = dst.findCosineDistance(source_representation, target_representation)
|
||||||
elif distance_metric == 'euclidean':
|
elif distance_metric == 'euclidean':
|
||||||
@ -837,33 +835,33 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
|
distance = dst.findEuclideanDistance(dst.l2_normalize(source_representation), dst.l2_normalize(target_representation))
|
||||||
else:
|
else:
|
||||||
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
||||||
|
|
||||||
distances.append(distance)
|
distances.append(distance)
|
||||||
|
|
||||||
threshold = functions.findThreshold(model_name, distance_metric)
|
threshold = functions.findThreshold(model_name, distance_metric)
|
||||||
|
|
||||||
df["distance"] = distances
|
df["distance"] = distances
|
||||||
df = df.drop(columns = ["representation"])
|
df = df.drop(columns = ["representation"])
|
||||||
df = df[df.distance <= threshold]
|
df = df[df.distance <= threshold]
|
||||||
|
|
||||||
df = df.sort_values(by = ["distance"], ascending=True).reset_index(drop=True)
|
df = df.sort_values(by = ["distance"], ascending=True).reset_index(drop=True)
|
||||||
resp_obj.append(df)
|
resp_obj.append(df)
|
||||||
df = df_base.copy() #restore df for the next iteration
|
df = df_base.copy() #restore df for the next iteration
|
||||||
|
|
||||||
toc = time.time()
|
toc = time.time()
|
||||||
|
|
||||||
print("find function lasts ",toc-tic," seconds")
|
print("find function lasts ",toc-tic," seconds")
|
||||||
|
|
||||||
if len(resp_obj) == 1:
|
if len(resp_obj) == 1:
|
||||||
return resp_obj[0]
|
return resp_obj[0]
|
||||||
|
|
||||||
return resp_obj
|
return resp_obj
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError("Passed db_path does not exist!")
|
raise ValueError("Passed db_path does not exist!")
|
||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def stream(db_path = '', model_name ='VGG-Face', distance_metric = 'cosine', enable_face_analysis = True):
|
def stream(db_path = '', model_name ='VGG-Face', distance_metric = 'cosine', enable_face_analysis = True):
|
||||||
realtime.analysis(db_path, model_name, distance_metric, enable_face_analysis)
|
realtime.analysis(db_path, model_name, distance_metric, enable_face_analysis)
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
441
my_deepface.ipynb
Normal file
441
my_deepface.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
test_imgs/.DS_Store
vendored
Normal file
BIN
test_imgs/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
test_imgs/test1.jpg
Normal file
BIN
test_imgs/test1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 285 KiB |
BIN
test_imgs/test2.jpeg
Normal file
BIN
test_imgs/test2.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.8 KiB |
BIN
test_imgs/test3.jpg
Normal file
BIN
test_imgs/test3.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 29 KiB |
Loading…
x
Reference in New Issue
Block a user