mirror of
https://github.com/serengil/deepface.git
synced 2025-06-02 09:30:06 +00:00
review chanages
This commit is contained in:
parent
2a6b222d52
commit
527a89c931
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import List
|
||||
from typing import List, Union
|
||||
import numpy as np
|
||||
|
||||
from deepface.commons import weight_utils, folder_utils
|
||||
@ -25,12 +25,12 @@ class Buffalo_L(FacialRecognition):
|
||||
raise ModuleNotFoundError(
|
||||
"InsightFace and its dependencies are optional for the Buffalo_L model. "
|
||||
"Please install them with: "
|
||||
"pip install insightface>=0.7.3 onnxruntime>=1.9.0 typing-extensions pydantic"
|
||||
"pip install insightface>=0.7.3 onnxruntime>=1.9.0 typing-extensions pydantic albumentations"
|
||||
) from err
|
||||
|
||||
# Define the model filename and subdirectory
|
||||
sub_dir = "buffalo_l"
|
||||
model_file = "w600k_r50.onnx"
|
||||
model_file = "webface_r50.onnx"
|
||||
model_rel_path = os.path.join(sub_dir, model_file)
|
||||
|
||||
# Get the DeepFace home directory and construct weights path
|
||||
@ -46,7 +46,7 @@ class Buffalo_L(FacialRecognition):
|
||||
# Download the model weights if not already present
|
||||
weights_path = weight_utils.download_weights_if_necessary(
|
||||
file_name=model_rel_path,
|
||||
source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" # pylint: disable=line-too-long
|
||||
source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" # pylint: disable=line-too-long
|
||||
)
|
||||
|
||||
# Verify the model file exists
|
||||
@ -55,20 +55,27 @@ class Buffalo_L(FacialRecognition):
|
||||
else:
|
||||
raise FileNotFoundError(f"Model file not found at: {weights_path}")
|
||||
|
||||
# Load the model
|
||||
self.model = get_model(model_file, root=buffalo_l_dir)
|
||||
# Load the model using the full path
|
||||
self.model = get_model(weights_path)
|
||||
self.model.prepare(ctx_id=-1, input_size=self.input_shape)
|
||||
|
||||
def preprocess(self, img: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Preprocess the image to match InsightFace recognition model expectations.
|
||||
Preprocess the image or batch of images to match InsightFace recognition model expectations.
|
||||
Args:
|
||||
img: Image in shape (1, 112, 112, 3) or (112, 112, 3)
|
||||
img: Image in shape (1, 112, 112, 3) or (112, 112, 3) or batch (batch_size, 112, 112, 3)
|
||||
Returns:
|
||||
Preprocessed image as numpy array
|
||||
Preprocessed image or batch as numpy array
|
||||
"""
|
||||
if len(img.shape) == 4:
|
||||
img = img[0]
|
||||
if len(img.shape) == 4: # Batch of images
|
||||
preprocessed_imgs = []
|
||||
for i in range(img.shape[0]):
|
||||
single_img = img[i]
|
||||
if single_img.max() <= 1.0:
|
||||
single_img = (single_img * 255).astype(np.uint8)
|
||||
single_img = single_img[:, :, ::-1] # Convert RGB to BGR
|
||||
preprocessed_imgs.append(single_img)
|
||||
return np.array(preprocessed_imgs)
|
||||
if len(img.shape) != 3:
|
||||
raise ValueError(
|
||||
f"Expected image to be 3D after preprocessing, but got shape: {img.shape}")
|
||||
@ -77,21 +84,20 @@ class Buffalo_L(FacialRecognition):
|
||||
img = img[:, :, ::-1] # Convert RGB to BGR
|
||||
return img
|
||||
|
||||
def forward(self, img: np.ndarray) -> List[float]:
|
||||
def forward(self, img: np.ndarray) -> Union[List[float], List[List[float]]]:
|
||||
"""
|
||||
Extract face embedding from a pre-cropped face image.
|
||||
Extract face embedding from a pre-cropped face image or batch of images.
|
||||
Args:
|
||||
img: Preprocessed face image with shape (1, 112, 112, 3)
|
||||
img: Preprocessed face image with shape (1, 112, 112, 3) or batch (batch_size, 112, 112, 3)
|
||||
Returns:
|
||||
Face embedding as a list of floats
|
||||
Face embedding as a list of floats (single image) or list of lists of floats (batch)
|
||||
"""
|
||||
img = self.preprocess(img)
|
||||
embedding = self.model.get_feat(img)
|
||||
if isinstance(embedding, np.ndarray) and len(embedding.shape) > 1:
|
||||
embedding = embedding.flatten()
|
||||
elif isinstance(embedding, list):
|
||||
embedding = np.array(embedding).flatten()
|
||||
if len(img.shape) == 4: # Batch
|
||||
embeddings = self.model.get_feat(img)
|
||||
return [embedding.tolist() for embedding in embeddings]
|
||||
elif len(img.shape) == 3: # Single image
|
||||
embedding = self.model.get_feat(np.expand_dims(img, axis=0))[0]
|
||||
return embedding.tolist()
|
||||
else:
|
||||
raise ValueError(f"Unexpected embedding type: {type(embedding)}")
|
||||
return embedding.tolist()
|
||||
|
||||
raise ValueError(f"Unexpected embedding type after preprocessing: {img.shape}")
|
@ -8,4 +8,5 @@ insightface>=0.7.3
|
||||
onnxruntime>=1.9.0
|
||||
tf-keras
|
||||
typing-extensions
|
||||
pydantic
|
||||
pydantic
|
||||
albumentations
|
Loading…
x
Reference in New Issue
Block a user