mirror of
https://github.com/serengil/deepface.git
synced 2025-06-05 19:15:23 +00:00
[fix] use prediction shape to avoid confuse situation of predictions
This commit is contained in:
parent
ad577b4206
commit
52a38ba21a
@ -1,5 +1,5 @@
|
||||
# built-in dependencies
|
||||
from typing import Any, Dict, List, Union
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
# 3rd party dependencies
|
||||
import numpy as np
|
||||
@ -117,8 +117,6 @@ def analyze(
|
||||
f"Invalid action passed ({repr(action)})). "
|
||||
"Valid actions are `emotion`, `age`, `gender`, `race`."
|
||||
)
|
||||
# ---------------------------------
|
||||
resp_objects = []
|
||||
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=img_path,
|
||||
@ -130,137 +128,105 @@ def analyze(
|
||||
anti_spoofing=anti_spoofing,
|
||||
)
|
||||
|
||||
# Anti-spoofing check
|
||||
if anti_spoofing and any(img_obj.get("is_real", True) is False for img_obj in img_objs):
|
||||
raise ValueError("Spoof detected in the given image.")
|
||||
|
||||
# Prepare the input for the model
|
||||
valid_faces = []
|
||||
face_regions = []
|
||||
face_confidences = []
|
||||
|
||||
for img_obj in img_objs:
|
||||
# Extract the face content
|
||||
def preprocess_face(img_obj: Dict[str, Any]) -> Optional[np.ndarray]:
|
||||
"""
|
||||
Preprocess the face image for analysis.
|
||||
"""
|
||||
img_content = img_obj["face"]
|
||||
# Check if the face content is empty
|
||||
if img_content.shape[0] == 0 or img_content.shape[1] == 0:
|
||||
continue
|
||||
return None
|
||||
img_content = img_content[:, :, ::-1] # BGR to RGB
|
||||
return preprocessing.resize_image(img=img_content, target_size=(224, 224))
|
||||
|
||||
# Convert the image to RGB format from BGR
|
||||
img_content = img_content[:, :, ::-1]
|
||||
# Resize the image to the target size for the model
|
||||
img_content = preprocessing.resize_image(img=img_content, target_size=(224, 224))
|
||||
|
||||
valid_faces.append(img_content)
|
||||
face_regions.append(img_obj["facial_area"])
|
||||
face_confidences.append(img_obj["confidence"])
|
||||
|
||||
# If no valid faces are found, return an empty list
|
||||
if not valid_faces:
|
||||
# Filter out empty faces
|
||||
face_data = [(preprocess_face(img_obj), img_obj["facial_area"], img_obj["confidence"])
|
||||
for img_obj in img_objs if img_obj["face"].size > 0]
|
||||
|
||||
if not face_data:
|
||||
return []
|
||||
|
||||
# Convert the list of valid faces to a numpy array
|
||||
# Unpack the face data
|
||||
valid_faces, face_regions, face_confidences = zip(*face_data)
|
||||
faces_array = np.array(valid_faces)
|
||||
|
||||
# Preprocess the result to a list of dictionaries
|
||||
resp_objects = []
|
||||
# Initialize the results list with face regions and confidence scores
|
||||
results = [{"region": region, "face_confidence": conf}
|
||||
for region, conf in zip(face_regions, face_confidences)]
|
||||
|
||||
# For each action, predict the corresponding attribute
|
||||
# Iterate over the actions and perform analysis
|
||||
pbar = tqdm(
|
||||
range(0, len(actions)),
|
||||
actions,
|
||||
desc="Finding actions",
|
||||
disable=silent if len(actions) > 1 else True,
|
||||
)
|
||||
|
||||
for index in pbar:
|
||||
action = actions[index]
|
||||
|
||||
for action in pbar:
|
||||
pbar.set_description(f"Action: {action}")
|
||||
resp_object = {}
|
||||
model = modeling.build_model(task="facial_attribute", model_name=action.capitalize())
|
||||
predictions = model.predict(faces_array)
|
||||
|
||||
# If the model returns a single prediction, reshape it to match the number of faces
|
||||
# Use number of faces and number of predictions shape to determine the correct shape of predictions
|
||||
# For example, if there are 1 face to predict with Emotion model, reshape predictions to (1, 7)
|
||||
if faces_array.shape[0] == 1 and len(predictions.shape) == 1:
|
||||
# For models like `Emotion`, which return a single prediction for a single face
|
||||
predictions = predictions.reshape(1, -1)
|
||||
|
||||
# Update the results with the predictions
|
||||
# ----------------------------------------
|
||||
# For emotion, calculate the percentage of each emotion and find the dominant emotion
|
||||
if action == "emotion":
|
||||
# Build the emotion model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Emotion")
|
||||
emotion_predictions = model.predict(faces_array)
|
||||
|
||||
# Handle single vs multiple emotion predictions
|
||||
if len(emotion_predictions.shape) == 1:
|
||||
# Single face case - reshape predictions to 2D array for consistent handling
|
||||
emotion_predictions = emotion_predictions.reshape(1, -1)
|
||||
|
||||
# Process predictions for each face
|
||||
for idx, predictions in enumerate(emotion_predictions):
|
||||
sum_of_predictions = predictions.sum()
|
||||
resp_object["emotion"] = {}
|
||||
|
||||
# Calculate emotion probabilities and store in response
|
||||
for i, emotion_label in enumerate(Emotion.labels):
|
||||
emotion_probability = 100 * predictions[i] / sum_of_predictions
|
||||
resp_object["emotion"][emotion_label] = emotion_probability
|
||||
|
||||
# Store dominant emotion
|
||||
resp_object["dominant_emotion"] = Emotion.labels[np.argmax(predictions)]
|
||||
|
||||
emotion_results = [
|
||||
{
|
||||
"emotion": {
|
||||
label: 100 * pred[i] / pred.sum()
|
||||
for i, label in enumerate(Emotion.labels)
|
||||
},
|
||||
"dominant_emotion": Emotion.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, emotion_result in zip(results, emotion_results):
|
||||
result.update(emotion_result)
|
||||
# ----------------------------------------
|
||||
# For age, find the dominant age category (0-100)
|
||||
elif action == "age":
|
||||
# Build the age model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Age")
|
||||
age_predictions = model.predict(faces_array)
|
||||
|
||||
# Handle single vs multiple age predictions
|
||||
if faces_array.shape[0] == 1:
|
||||
# Single face case - reshape predictions to 2D array for consistent handling
|
||||
resp_object["age"] = int(np.argmax(age_predictions))
|
||||
else:
|
||||
# Multiple face case - iterate over each prediction
|
||||
for idx, age in enumerate(age_predictions):
|
||||
resp_object["age"] = int(age)
|
||||
|
||||
|
||||
age_results = [{"age": int(np.argmax(pred) if len(pred.shape) > 0 else pred)}
|
||||
for pred in predictions]
|
||||
for result, age_result in zip(results, age_results):
|
||||
result.update(age_result)
|
||||
# ----------------------------------------
|
||||
# For gender, calculate the percentage of each gender and find the dominant gender
|
||||
elif action == "gender":
|
||||
# Build the gender model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Gender")
|
||||
gender_predictions = model.predict(faces_array)
|
||||
|
||||
# Handle single vs multiple gender predictions
|
||||
if len(gender_predictions.shape) == 1:
|
||||
# Single face case - reshape predictions to 2D array for consistent handling
|
||||
gender_predictions = gender_predictions.reshape(1, -1)
|
||||
|
||||
# Process predictions for each face
|
||||
for idx, predictions in enumerate(gender_predictions):
|
||||
resp_object["gender"] = {}
|
||||
|
||||
for i, gender_label in enumerate(Gender.labels):
|
||||
gender_prediction = 100 * predictions[i]
|
||||
resp_object["gender"][gender_label] = gender_prediction
|
||||
|
||||
resp_object["dominant_gender"] = Gender.labels[np.argmax(predictions)]
|
||||
|
||||
gender_results = [
|
||||
{
|
||||
"gender": {
|
||||
label: 100 * pred[i]
|
||||
for i, label in enumerate(Gender.labels)
|
||||
},
|
||||
"dominant_gender": Gender.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, gender_result in zip(results, gender_results):
|
||||
result.update(gender_result)
|
||||
# ----------------------------------------
|
||||
# For race, calculate the percentage of each race and find the dominant race
|
||||
elif action == "race":
|
||||
# Build the race model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Race")
|
||||
race_predictions = model.predict(faces_array)
|
||||
race_results = [
|
||||
{
|
||||
"race": {
|
||||
label: 100 * pred[i] / pred.sum()
|
||||
for i, label in enumerate(Race.labels)
|
||||
},
|
||||
"dominant_race": Race.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, race_result in zip(results, race_results):
|
||||
result.update(race_result)
|
||||
|
||||
# Handle single vs multiple race predictions
|
||||
if len(race_predictions.shape) == 1:
|
||||
# Single face case - reshape predictions to 2D array for consistent handling
|
||||
race_predictions = race_predictions.reshape(1, -1)
|
||||
|
||||
for idx, predictions in enumerate(race_predictions):
|
||||
sum_of_predictions = predictions.sum()
|
||||
resp_object["race"] = {}
|
||||
|
||||
for i, race_label in enumerate(Race.labels):
|
||||
race_prediction = 100 * predictions[i] / sum_of_predictions
|
||||
resp_object["race"][race_label] = race_prediction
|
||||
|
||||
resp_object["dominant_race"] = Race.labels[np.argmax(predictions)]
|
||||
|
||||
# Add the response object to the list of response objects
|
||||
resp_objects.append(resp_object)
|
||||
|
||||
# Add the face region and confidence to the response objects
|
||||
for idx, resp_obj in enumerate(resp_objects):
|
||||
resp_obj["region"] = face_regions[idx]
|
||||
resp_obj["face_confidence"] = face_confidences[idx]
|
||||
|
||||
return resp_objects
|
||||
return results
|
Loading…
x
Reference in New Issue
Block a user