[fix] use prediction shape to avoid confuse situation of predictions

This commit is contained in:
NatLee 2025-01-07 05:54:44 +08:00
parent ad577b4206
commit 52a38ba21a

View File

@ -1,5 +1,5 @@
# built-in dependencies
from typing import Any, Dict, List, Union
from typing import Any, Dict, List, Union, Optional
# 3rd party dependencies
import numpy as np
@ -117,8 +117,6 @@ def analyze(
f"Invalid action passed ({repr(action)})). "
"Valid actions are `emotion`, `age`, `gender`, `race`."
)
# ---------------------------------
resp_objects = []
img_objs = detection.extract_faces(
img_path=img_path,
@ -130,137 +128,105 @@ def analyze(
anti_spoofing=anti_spoofing,
)
# Anti-spoofing check
if anti_spoofing and any(img_obj.get("is_real", True) is False for img_obj in img_objs):
raise ValueError("Spoof detected in the given image.")
# Prepare the input for the model
valid_faces = []
face_regions = []
face_confidences = []
for img_obj in img_objs:
# Extract the face content
def preprocess_face(img_obj: Dict[str, Any]) -> Optional[np.ndarray]:
"""
Preprocess the face image for analysis.
"""
img_content = img_obj["face"]
# Check if the face content is empty
if img_content.shape[0] == 0 or img_content.shape[1] == 0:
continue
return None
img_content = img_content[:, :, ::-1] # BGR to RGB
return preprocessing.resize_image(img=img_content, target_size=(224, 224))
# Convert the image to RGB format from BGR
img_content = img_content[:, :, ::-1]
# Resize the image to the target size for the model
img_content = preprocessing.resize_image(img=img_content, target_size=(224, 224))
valid_faces.append(img_content)
face_regions.append(img_obj["facial_area"])
face_confidences.append(img_obj["confidence"])
# If no valid faces are found, return an empty list
if not valid_faces:
# Filter out empty faces
face_data = [(preprocess_face(img_obj), img_obj["facial_area"], img_obj["confidence"])
for img_obj in img_objs if img_obj["face"].size > 0]
if not face_data:
return []
# Convert the list of valid faces to a numpy array
# Unpack the face data
valid_faces, face_regions, face_confidences = zip(*face_data)
faces_array = np.array(valid_faces)
# Preprocess the result to a list of dictionaries
resp_objects = []
# Initialize the results list with face regions and confidence scores
results = [{"region": region, "face_confidence": conf}
for region, conf in zip(face_regions, face_confidences)]
# For each action, predict the corresponding attribute
# Iterate over the actions and perform analysis
pbar = tqdm(
range(0, len(actions)),
actions,
desc="Finding actions",
disable=silent if len(actions) > 1 else True,
)
for index in pbar:
action = actions[index]
for action in pbar:
pbar.set_description(f"Action: {action}")
resp_object = {}
model = modeling.build_model(task="facial_attribute", model_name=action.capitalize())
predictions = model.predict(faces_array)
# If the model returns a single prediction, reshape it to match the number of faces
# Use number of faces and number of predictions shape to determine the correct shape of predictions
# For example, if there are 1 face to predict with Emotion model, reshape predictions to (1, 7)
if faces_array.shape[0] == 1 and len(predictions.shape) == 1:
# For models like `Emotion`, which return a single prediction for a single face
predictions = predictions.reshape(1, -1)
# Update the results with the predictions
# ----------------------------------------
# For emotion, calculate the percentage of each emotion and find the dominant emotion
if action == "emotion":
# Build the emotion model
model = modeling.build_model(task="facial_attribute", model_name="Emotion")
emotion_predictions = model.predict(faces_array)
# Handle single vs multiple emotion predictions
if len(emotion_predictions.shape) == 1:
# Single face case - reshape predictions to 2D array for consistent handling
emotion_predictions = emotion_predictions.reshape(1, -1)
# Process predictions for each face
for idx, predictions in enumerate(emotion_predictions):
sum_of_predictions = predictions.sum()
resp_object["emotion"] = {}
# Calculate emotion probabilities and store in response
for i, emotion_label in enumerate(Emotion.labels):
emotion_probability = 100 * predictions[i] / sum_of_predictions
resp_object["emotion"][emotion_label] = emotion_probability
# Store dominant emotion
resp_object["dominant_emotion"] = Emotion.labels[np.argmax(predictions)]
emotion_results = [
{
"emotion": {
label: 100 * pred[i] / pred.sum()
for i, label in enumerate(Emotion.labels)
},
"dominant_emotion": Emotion.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, emotion_result in zip(results, emotion_results):
result.update(emotion_result)
# ----------------------------------------
# For age, find the dominant age category (0-100)
elif action == "age":
# Build the age model
model = modeling.build_model(task="facial_attribute", model_name="Age")
age_predictions = model.predict(faces_array)
# Handle single vs multiple age predictions
if faces_array.shape[0] == 1:
# Single face case - reshape predictions to 2D array for consistent handling
resp_object["age"] = int(np.argmax(age_predictions))
else:
# Multiple face case - iterate over each prediction
for idx, age in enumerate(age_predictions):
resp_object["age"] = int(age)
age_results = [{"age": int(np.argmax(pred) if len(pred.shape) > 0 else pred)}
for pred in predictions]
for result, age_result in zip(results, age_results):
result.update(age_result)
# ----------------------------------------
# For gender, calculate the percentage of each gender and find the dominant gender
elif action == "gender":
# Build the gender model
model = modeling.build_model(task="facial_attribute", model_name="Gender")
gender_predictions = model.predict(faces_array)
# Handle single vs multiple gender predictions
if len(gender_predictions.shape) == 1:
# Single face case - reshape predictions to 2D array for consistent handling
gender_predictions = gender_predictions.reshape(1, -1)
# Process predictions for each face
for idx, predictions in enumerate(gender_predictions):
resp_object["gender"] = {}
for i, gender_label in enumerate(Gender.labels):
gender_prediction = 100 * predictions[i]
resp_object["gender"][gender_label] = gender_prediction
resp_object["dominant_gender"] = Gender.labels[np.argmax(predictions)]
gender_results = [
{
"gender": {
label: 100 * pred[i]
for i, label in enumerate(Gender.labels)
},
"dominant_gender": Gender.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, gender_result in zip(results, gender_results):
result.update(gender_result)
# ----------------------------------------
# For race, calculate the percentage of each race and find the dominant race
elif action == "race":
# Build the race model
model = modeling.build_model(task="facial_attribute", model_name="Race")
race_predictions = model.predict(faces_array)
race_results = [
{
"race": {
label: 100 * pred[i] / pred.sum()
for i, label in enumerate(Race.labels)
},
"dominant_race": Race.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, race_result in zip(results, race_results):
result.update(race_result)
# Handle single vs multiple race predictions
if len(race_predictions.shape) == 1:
# Single face case - reshape predictions to 2D array for consistent handling
race_predictions = race_predictions.reshape(1, -1)
for idx, predictions in enumerate(race_predictions):
sum_of_predictions = predictions.sum()
resp_object["race"] = {}
for i, race_label in enumerate(Race.labels):
race_prediction = 100 * predictions[i] / sum_of_predictions
resp_object["race"][race_label] = race_prediction
resp_object["dominant_race"] = Race.labels[np.argmax(predictions)]
# Add the response object to the list of response objects
resp_objects.append(resp_object)
# Add the face region and confidence to the response objects
for idx, resp_obj in enumerate(resp_objects):
resp_obj["region"] = face_regions[idx]
resp_obj["face_confidence"] = face_confidences[idx]
return resp_objects
return results