From 52d6873253d103e9a477ad5b634e13eb81e4206a Mon Sep 17 00:00:00 2001 From: Sefik Ilkin Serengil Date: Sat, 17 Aug 2024 08:10:49 +0100 Subject: [PATCH] exception messages updated --- deepface/modules/verification.py | 17 ++++++++--------- 1 file changed, 8 insertions(+), 9 deletions(-) diff --git a/deepface/modules/verification.py b/deepface/modules/verification.py index a5cc934..b6b1002 100644 --- a/deepface/modules/verification.py +++ b/deepface/modules/verification.py @@ -115,22 +115,21 @@ def verify( } def extract_embeddings_and_facial_areas( - img_path: Union[str, np.ndarray, List[float]], - index: int - ) -> Tuple[List[List[float]], List[dict]]: + img_path: Union[str, np.ndarray, List[float]], index: int + ) -> Tuple[List[List[float]], List[dict]]: """ Extracts facial embeddings and corresponding facial areas from an image or returns pre-calculated embeddings. Depending on the type of img_path, the function either extracts - facial embeddings from the provided image + facial embeddings from the provided image (via a path or NumPy array) or verifies that the input is a list of pre-calculated embeddings and validates them. Args: - img_path (Union[str, np.ndarray, List[float]]): - - A string representing the file path to an image, - - A NumPy array containing the image data, + img_path (Union[str, np.ndarray, List[float]]): + - A string representing the file path to an image, + - A NumPy array containing the image data, - Or a list of pre-calculated embedding values (of type `float`). index (int): An index value used in error messages and logging to identify the number of the image. @@ -150,7 +149,7 @@ def verify( if silent is False: logger.warn( - "You passed 1st image as pre-calculated embeddings." + f"You passed {index}-th image as pre-calculated embeddings." "Please ensure that embeddings have been calculated" f" for the {model_name} model." ) @@ -158,7 +157,7 @@ def verify( if len(img_path) != dims: raise ValueError( f"embeddings of {model_name} should have {dims} dimensions," - f" but it has {len(img_path)} dimensions input" + f" but {index}-th image has {len(img_path)} dimensions input" ) img_embeddings = [img_path]