mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
Merge pull request #1186 from serengil/feat-task-1304-creating-more-utils
creating image utils
This commit is contained in:
commit
52e7796b7d
@ -10,7 +10,6 @@ os.environ["TF_USE_LEGACY_KERAS"] = "1"
|
||||
# pylint: disable=wrong-import-position
|
||||
|
||||
# 3rd party dependencies
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import tensorflow as tf
|
||||
@ -26,6 +25,7 @@ from deepface.modules import (
|
||||
demography,
|
||||
detection,
|
||||
streaming,
|
||||
preprocessing,
|
||||
)
|
||||
from deepface import __version__
|
||||
|
||||
@ -548,5 +548,5 @@ def detectFace(
|
||||
extracted_face = None
|
||||
if len(face_objs) > 0:
|
||||
extracted_face = face_objs[0]["face"]
|
||||
extracted_face = cv2.resize(extracted_face, target_size)
|
||||
extracted_face = preprocessing.resize_image(img=extracted_face, target_size=target_size)
|
||||
return extracted_face
|
||||
|
149
deepface/commons/image_utils.py
Normal file
149
deepface/commons/image_utils.py
Normal file
@ -0,0 +1,149 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
import io
|
||||
from typing import List, Union, Tuple
|
||||
import hashlib
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
# 3rd party dependencies
|
||||
import requests
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def list_images(path: str) -> List[str]:
|
||||
"""
|
||||
List images in a given path
|
||||
Args:
|
||||
path (str): path's location
|
||||
Returns:
|
||||
images (list): list of exact image paths
|
||||
"""
|
||||
images = []
|
||||
for r, _, f in os.walk(path):
|
||||
for file in f:
|
||||
exact_path = os.path.join(r, file)
|
||||
|
||||
_, ext = os.path.splitext(exact_path)
|
||||
ext_lower = ext.lower()
|
||||
|
||||
if ext_lower not in {".jpg", ".jpeg", ".png"}:
|
||||
continue
|
||||
|
||||
with Image.open(exact_path) as img: # lazy
|
||||
if img.format.lower() in ["jpeg", "png"]:
|
||||
images.append(exact_path)
|
||||
return images
|
||||
|
||||
|
||||
def find_image_hash(file_path: str) -> str:
|
||||
"""
|
||||
Find the hash of given image file with its properties
|
||||
finding the hash of image content is costly operation
|
||||
Args:
|
||||
file_path (str): exact image path
|
||||
Returns:
|
||||
hash (str): digest with sha1 algorithm
|
||||
"""
|
||||
file_stats = os.stat(file_path)
|
||||
|
||||
# some properties
|
||||
file_size = file_stats.st_size
|
||||
creation_time = file_stats.st_ctime
|
||||
modification_time = file_stats.st_mtime
|
||||
|
||||
properties = f"{file_size}-{creation_time}-{modification_time}"
|
||||
|
||||
hasher = hashlib.sha1()
|
||||
hasher.update(properties.encode("utf-8"))
|
||||
return hasher.hexdigest()
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return load_image_from_base64(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
||||
return load_image_from_web(url=img), img
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def load_image_from_base64(uri: str) -> np.ndarray:
|
||||
"""
|
||||
Load image from base64 string.
|
||||
Args:
|
||||
uri: a base64 string.
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
|
||||
encoded_data_parts = uri.split(",")
|
||||
|
||||
if len(encoded_data_parts) < 2:
|
||||
raise ValueError("format error in base64 encoded string")
|
||||
|
||||
encoded_data = encoded_data_parts[1]
|
||||
decoded_bytes = base64.b64decode(encoded_data)
|
||||
|
||||
# similar to find functionality, we are just considering these extensions
|
||||
# content type is safer option than file extension
|
||||
with Image.open(io.BytesIO(decoded_bytes)) as img:
|
||||
file_type = img.format.lower()
|
||||
if file_type not in ["jpeg", "png"]:
|
||||
raise ValueError(f"input image can be jpg or png, but it is {file_type}")
|
||||
|
||||
nparr = np.fromstring(decoded_bytes, np.uint8)
|
||||
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_bgr
|
||||
|
||||
|
||||
def load_image_from_web(url: str) -> np.ndarray:
|
||||
"""
|
||||
Loading an image from web
|
||||
Args:
|
||||
url: link for the image
|
||||
Returns:
|
||||
img (np.ndarray): equivalent to pre-loaded image from opencv (BGR format)
|
||||
"""
|
||||
response = requests.get(url, stream=True, timeout=60)
|
||||
response.raise_for_status()
|
||||
image_array = np.asarray(bytearray(response.raw.read()), dtype=np.uint8)
|
||||
img = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
||||
return img
|
@ -1,7 +1,3 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
import hashlib
|
||||
|
||||
# 3rd party dependencies
|
||||
import tensorflow as tf
|
||||
|
||||
@ -29,29 +25,6 @@ def get_tf_minor_version() -> int:
|
||||
return int(tf.__version__.split(".", maxsplit=-1)[1])
|
||||
|
||||
|
||||
def find_hash_of_file(file_path: str) -> str:
|
||||
"""
|
||||
Find the hash of given image file with its properties
|
||||
finding the hash of image content is costly operation
|
||||
Args:
|
||||
file_path (str): exact image path
|
||||
Returns:
|
||||
hash (str): digest with sha1 algorithm
|
||||
"""
|
||||
file_stats = os.stat(file_path)
|
||||
|
||||
# some properties
|
||||
file_size = file_stats.st_size
|
||||
creation_time = file_stats.st_ctime
|
||||
modification_time = file_stats.st_mtime
|
||||
|
||||
properties = f"{file_size}-{creation_time}-{modification_time}"
|
||||
|
||||
hasher = hashlib.sha1()
|
||||
hasher.update(properties.encode("utf-8"))
|
||||
return hasher.hexdigest()
|
||||
|
||||
|
||||
def validate_for_keras3():
|
||||
tf_major = get_tf_major_version()
|
||||
tf_minor = get_tf_minor_version()
|
||||
|
@ -7,9 +7,9 @@ import cv2
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import preprocessing
|
||||
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
||||
from deepface.detectors import DetectorWrapper
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons import logger as log
|
||||
|
||||
logger = log.get_singletonish_logger()
|
||||
@ -63,7 +63,7 @@ def extract_faces(
|
||||
resp_objs = []
|
||||
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img, img_name = preprocessing.load_image(img_path)
|
||||
img, img_name = image_utils.load_image(img_path)
|
||||
|
||||
if img is None:
|
||||
raise ValueError(f"Exception while loading {img_name}")
|
||||
|
@ -1,15 +1,9 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
from typing import Union, Tuple
|
||||
import base64
|
||||
from pathlib import Path
|
||||
import io
|
||||
from typing import Tuple
|
||||
|
||||
# 3rd party
|
||||
import numpy as np
|
||||
import cv2
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import package_utils
|
||||
@ -22,95 +16,6 @@ elif tf_major_version == 2:
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return load_base64(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.lower().startswith("http://") or img.lower().startswith("https://"):
|
||||
return load_image_from_web(url=img), img
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def load_image_from_web(url: str) -> np.ndarray:
|
||||
"""
|
||||
Loading an image from web
|
||||
Args:
|
||||
url: link for the image
|
||||
Returns:
|
||||
img (np.ndarray): equivalent to pre-loaded image from opencv (BGR format)
|
||||
"""
|
||||
response = requests.get(url, stream=True, timeout=60)
|
||||
response.raise_for_status()
|
||||
image_array = np.asarray(bytearray(response.raw.read()), dtype=np.uint8)
|
||||
img = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
||||
return img
|
||||
|
||||
|
||||
def load_base64(uri: str) -> np.ndarray:
|
||||
"""Load image from base64 string.
|
||||
|
||||
Args:
|
||||
uri: a base64 string.
|
||||
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
|
||||
encoded_data_parts = uri.split(",")
|
||||
|
||||
if len(encoded_data_parts) < 2:
|
||||
raise ValueError("format error in base64 encoded string")
|
||||
|
||||
encoded_data = encoded_data_parts[1]
|
||||
decoded_bytes = base64.b64decode(encoded_data)
|
||||
|
||||
# similar to find functionality, we are just considering these extensions
|
||||
# content type is safer option than file extension
|
||||
with Image.open(io.BytesIO(decoded_bytes)) as img:
|
||||
file_type = img.format.lower()
|
||||
if file_type not in ["jpeg", "png"]:
|
||||
raise ValueError(f"input image can be jpg or png, but it is {file_type}")
|
||||
|
||||
nparr = np.fromstring(decoded_bytes, np.uint8)
|
||||
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_bgr
|
||||
|
||||
|
||||
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
||||
"""Normalize input image.
|
||||
|
||||
|
@ -8,10 +8,9 @@ import time
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import package_utils
|
||||
from deepface.commons import image_utils
|
||||
from deepface.modules import representation, detection, verification
|
||||
from deepface.commons import logger as log
|
||||
|
||||
@ -144,7 +143,7 @@ def find(
|
||||
pickled_images = [representation["identity"] for representation in representations]
|
||||
|
||||
# Get the list of images on storage
|
||||
storage_images = __list_images(path=db_path)
|
||||
storage_images = image_utils.list_images(path=db_path)
|
||||
|
||||
if len(storage_images) == 0:
|
||||
raise ValueError(f"No item found in {db_path}")
|
||||
@ -161,7 +160,7 @@ def find(
|
||||
if identity in old_images:
|
||||
continue
|
||||
alpha_hash = current_representation["hash"]
|
||||
beta_hash = package_utils.find_hash_of_file(identity)
|
||||
beta_hash = image_utils.find_image_hash(identity)
|
||||
if alpha_hash != beta_hash:
|
||||
logger.debug(f"Even though {identity} represented before, it's replaced later.")
|
||||
replaced_images.append(identity)
|
||||
@ -292,31 +291,6 @@ def find(
|
||||
return resp_obj
|
||||
|
||||
|
||||
def __list_images(path: str) -> List[str]:
|
||||
"""
|
||||
List images in a given path
|
||||
Args:
|
||||
path (str): path's location
|
||||
Returns:
|
||||
images (list): list of exact image paths
|
||||
"""
|
||||
images = []
|
||||
for r, _, f in os.walk(path):
|
||||
for file in f:
|
||||
exact_path = os.path.join(r, file)
|
||||
|
||||
_, ext = os.path.splitext(exact_path)
|
||||
ext_lower = ext.lower()
|
||||
|
||||
if ext_lower not in {".jpg", ".jpeg", ".png"}:
|
||||
continue
|
||||
|
||||
with Image.open(exact_path) as img: # lazy
|
||||
if img.format.lower() in ["jpeg", "png"]:
|
||||
images.append(exact_path)
|
||||
return images
|
||||
|
||||
|
||||
def __find_bulk_embeddings(
|
||||
employees: List[str],
|
||||
model_name: str = "VGG-Face",
|
||||
@ -360,7 +334,7 @@ def __find_bulk_embeddings(
|
||||
desc="Finding representations",
|
||||
disable=silent,
|
||||
):
|
||||
file_hash = package_utils.find_hash_of_file(employee)
|
||||
file_hash = image_utils.find_image_hash(employee)
|
||||
|
||||
try:
|
||||
img_objs = detection.extract_faces(
|
||||
|
@ -5,6 +5,7 @@ from typing import Any, Dict, List, Union
|
||||
import numpy as np
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import image_utils
|
||||
from deepface.modules import modeling, detection, preprocessing
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
|
||||
@ -74,7 +75,7 @@ def represent(
|
||||
)
|
||||
else: # skip
|
||||
# Try load. If load error, will raise exception internal
|
||||
img, _ = preprocessing.load_image(img_path)
|
||||
img, _ = image_utils.load_image(img_path)
|
||||
|
||||
if len(img.shape) != 3:
|
||||
raise ValueError(f"Input img must be 3 dimensional but it is {img.shape}")
|
||||
|
@ -1,3 +1,4 @@
|
||||
requests>=2.27.1
|
||||
numpy>=1.14.0
|
||||
pandas>=0.23.4
|
||||
gdown>=3.10.1
|
||||
|
@ -6,6 +6,7 @@ import pytest
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
from deepface.modules import preprocessing
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons import logger as log
|
||||
|
||||
logger = log.get_singletonish_logger()
|
||||
@ -60,12 +61,12 @@ def test_file_types_while_loading_base64():
|
||||
img1_base64 = image_to_base64(image_path=img1_path)
|
||||
|
||||
with pytest.raises(ValueError, match="input image can be jpg or png, but it is"):
|
||||
_ = preprocessing.load_base64(uri=img1_base64)
|
||||
_ = image_utils.load_image_from_base64(uri=img1_base64)
|
||||
|
||||
img2_path = "dataset/img1.jpg"
|
||||
img2_base64 = image_to_base64(image_path=img2_path)
|
||||
|
||||
img2 = preprocessing.load_base64(uri=img2_base64)
|
||||
img2 = image_utils.load_image_from_base64(uri=img2_base64)
|
||||
# 3 dimensional image should be loaded
|
||||
assert len(img2.shape) == 3
|
||||
|
||||
|
@ -8,7 +8,7 @@ import pandas as pd
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
from deepface.modules import verification
|
||||
from deepface.modules import recognition
|
||||
from deepface.commons import image_utils
|
||||
from deepface.commons import logger as log
|
||||
|
||||
logger = log.get_singletonish_logger()
|
||||
@ -95,7 +95,7 @@ def test_filetype_for_find():
|
||||
|
||||
|
||||
def test_filetype_for_find_bulk_embeddings():
|
||||
imgs = recognition.__list_images("dataset")
|
||||
imgs = image_utils.list_images("dataset")
|
||||
|
||||
assert len(imgs) > 0
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user