mirror of
https://github.com/serengil/deepface.git
synced 2025-06-05 19:15:23 +00:00
merge
This commit is contained in:
commit
58aae84e54
57
README.md
57
README.md
@ -2,11 +2,7 @@
|
||||
|
||||
[](https://pepy.tech/project/deepface)
|
||||
|
||||
**deepface** is a lightweight python based facial analysis framework including face recognition and demography. You can use the framework with a just few lines of codes.
|
||||
|
||||
# Face Recognition
|
||||
|
||||
Verify function under the DeepFace interface is used for face recognition.
|
||||
**deepface** is a lightweight python based face recognition framework. You can verify faces with just a few lines of codes.
|
||||
|
||||
```python
|
||||
from deepface import DeepFace
|
||||
@ -56,54 +52,9 @@ Instead of using pre-tuned threshold values, you can alternatively check the dis
|
||||
distance = result[1] #the less the better
|
||||
threshold = 0.30 #threshold for VGG-Face and Cosine Similarity
|
||||
if distance < threshold:
|
||||
return True
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
```
|
||||
|
||||
# Facial Attribute Analysis
|
||||
|
||||
Deepface also offers facial attribute analysis including [`age`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`gender`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`emotion`](https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/) and [`race`](https://sefiks.com/2019/11/11/race-and-ethnicity-prediction-in-keras/) predictions. Analysis function under the DeepFace interface is used to find demography of a face.
|
||||
|
||||
```python
|
||||
from deepface import DeepFace
|
||||
demography = DeepFace.analyze("img.zip") #passing nothing as 2nd argument will find everything
|
||||
#demography = DeepFace.analyze("img.zip", ['age', 'gender', 'race', 'emotion']) #identical to above line
|
||||
```
|
||||
|
||||
Analysis function returns a json object.
|
||||
|
||||
```
|
||||
{
|
||||
"age": 31.940666721338523
|
||||
, "gender": "Woman"
|
||||
, "race": {
|
||||
"asian": 11.314528435468674,
|
||||
"indian": 17.498773336410522,
|
||||
"black": 3.541698679327965,
|
||||
"white": 21.96589708328247,
|
||||
"middle eastern": 19.87851709127426,
|
||||
"latino hispanic": 25.800585746765137
|
||||
}
|
||||
, "dominant_race": "latino hispanic"
|
||||
, "emotion": {
|
||||
"angry": 6.004959843039945e-16,
|
||||
"disgust": 4.9082449499136944e-34,
|
||||
"fear": 4.7907148065142067e-23,
|
||||
"happy": 100.0,
|
||||
"sad": 4.8685008000541987e-14,
|
||||
"surprise": 5.66862615875019e-10,
|
||||
"neutral": 3.754812086254056e-09
|
||||
}
|
||||
, "dominant_emotion": "happy"
|
||||
}
|
||||
```
|
||||
|
||||
Then, you can retrieve the fields of the response object easily in Python.
|
||||
|
||||
```python
|
||||
import json
|
||||
print("Age: ",demography["age"])
|
||||
return False
|
||||
```
|
||||
|
||||
# Installation
|
||||
@ -126,13 +77,11 @@ Initial tests are run for Python 3.5.5 on Windows 10 but this is an OS-independe
|
||||
|
||||
```
|
||||
pip install numpy==1.14.0
|
||||
pip install pandas==0.23.4
|
||||
pip install matplotlib==2.2.2
|
||||
pip install gdown==3.10.1
|
||||
pip install opencv-python==3.4.4
|
||||
pip install tensorflow==1.9.0
|
||||
pip install keras==2.2.0
|
||||
pip install tqdm==4.30.0
|
||||
```
|
||||
|
||||
# Disclaimer
|
||||
|
Loading…
x
Reference in New Issue
Block a user