This commit is contained in:
Sefik Ilkin Serengil 2020-12-04 11:17:49 +03:00 committed by GitHub
parent b7abd5547c
commit 5f60d5fba6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -47,7 +47,7 @@ df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db")
**Large Scale Face Recognition** - [`Demo with Elasticsearch`](https://youtu.be/i4GvuOmzKzo), [`Demo with Spotify Annoy`](https://youtu.be/Jpxm914o2xk) **Large Scale Face Recognition** - [`Demo with Elasticsearch`](https://youtu.be/i4GvuOmzKzo), [`Demo with Spotify Annoy`](https://youtu.be/Jpxm914o2xk)
Notice that face recognition has O(n) time complexity and this might be problematic for millions level data. Herein, approximate nearest neighbor (a-nn) algorithm reduces the time complexity dramatically. [Spotify Annoy](https://sefiks.com/2020/09/16/large-scale-face-recognition-with-spotify-annoy/), [Facebook Faiss](https://sefiks.com/2020/09/17/large-scale-face-recognition-with-facebook-faiss/) and [NMSLIB](https://sefiks.com/2020/09/19/large-scale-face-recognition-with-nmslib/) are amazing a-nn libraries. Besides, [Elasticsearch](https://sefiks.com/2020/11/27/large-scale-face-recognition-with-elasticsearch/) wraps a-nn algorithm and it offers highly scalable feature. You should run deepface within those a-nn frameworks if you have really large scale data sets. Notice that face recognition has O(n) time complexity and this might be problematic for millions level data. Herein, approximate nearest neighbor (a-nn) algorithm reduces the time complexity dramatically. [Spotify Annoy](https://sefiks.com/2020/09/16/large-scale-face-recognition-with-spotify-annoy/), [Facebook Faiss](https://sefiks.com/2020/09/17/large-scale-face-recognition-with-facebook-faiss/) and [NMSLIB](https://sefiks.com/2020/09/19/large-scale-face-recognition-with-nmslib/) are amazing a-nn libraries. Besides, [Elasticsearch](https://sefiks.com/2020/11/27/large-scale-face-recognition-with-elasticsearch/) wraps an a-nn algorithm and it offers highly scalable feature. You should run deepface within those a-nn frameworks if you have really large scale data sets.
**Face recognition models** - [`Demo`](https://youtu.be/i_MOwvhbLdI) **Face recognition models** - [`Demo`](https://youtu.be/i_MOwvhbLdI)