diff --git a/README.md b/README.md index 17bc46d..513d612 100644 --- a/README.md +++ b/README.md @@ -104,15 +104,19 @@ models = [ #face verification result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", - model_name = models[1]) + model_name = models[1] +) #face recognition df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", - model_name = models[1]) + model_name = models[1] +) #embeddings -embedding = DeepFace.represent(img_path = "img.jpg", model_name = models[1]) +embedding = DeepFace.represent(img_path = "img.jpg", + model_name = models[1] +) ```

@@ -143,12 +147,14 @@ metrics = ["cosine", "euclidean", "euclidean_l2"] #face verification result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", - distance_metric = metrics[1]) + distance_metric = metrics[1] +) #face recognition df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", - distance_metric = metrics[1]) + distance_metric = metrics[1] +) ``` Euclidean L2 form [seems](https://youtu.be/i_MOwvhbLdI) to be more stable than cosine and regular Euclidean distance based on experiments. @@ -159,7 +165,8 @@ Deepface also comes with a strong facial attribute analysis module including [`a ```python obj = DeepFace.analyze(img_path = "img4.jpg", - actions = ['age', 'gender', 'race', 'emotion']) + actions = ['age', 'gender', 'race', 'emotion'] +) ```

@@ -188,25 +195,30 @@ backends = [ #face verification obj = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", - detector_backend = backends[4]) + detector_backend = backends[4] +) #face recognition df = DeepFace.find(img_path = "img.jpg", db_path = "my_db", - detector_backend = backends[4]) + detector_backend = backends[4] +) #embeddings embedding = DeepFace.represent(img_path = "img.jpg", - detector_backend = backends[4]) + detector_backend = backends[4] +) #facial analysis demography = DeepFace.analyze(img_path = "img4.jpg", - detector_backend = backends[4]) + detector_backend = backends[4] +) #face detection and alignment face = DeepFace.detectFace(img_path = "img.jpg", target_size = (224, 224), - detector_backend = backends[4]) + detector_backend = backends[4] +) ``` Face recognition models are actually CNN models and they expect standard sized inputs. So, resizing is required before representation. To avoid deformation, deepface adds black padding pixels according to the target size argument after detection and alignment.