diff --git a/tests/unit_tests.py b/tests/unit_tests.py index 62852a0..b6c01e2 100644 --- a/tests/unit_tests.py +++ b/tests/unit_tests.py @@ -60,7 +60,7 @@ def test_cases(): for detector in detectors: img = DeepFace.detectFace("dataset/img11.jpg", detector_backend = detector) - evaluate( img.shape[0] > 0 and img.shape[1] > 0 ) + evaluate(img.shape[0] > 0 and img.shape[1] > 0) print(detector," test is done") print("-----------------------------------------") @@ -68,7 +68,7 @@ def test_cases(): img_path = "dataset/img1.jpg" embedding = DeepFace.represent(img_path) print("Function returned ", len(embedding), "dimensional vector") - evaluate( len(embedding) > 0 ) + evaluate(len(embedding) > 0) print("-----------------------------------------") @@ -86,7 +86,7 @@ def test_cases(): df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset") print(df.head()) - evaluate( df.shape[0] > 0 ) + evaluate(df.shape[0] > 0) print("-----------------------------------------") @@ -96,8 +96,8 @@ def test_cases(): demography = DeepFace.analyze(img) print(demography) - evaluate( demography["age"] > 20 and demography["age"] < 40 ) - evaluate( demography["gender"] == "Woman" ) + evaluate(demography["age"] > 20 and demography["age"] < 40) + evaluate(demography["gender"] == "Woman") print("-----------------------------------------") @@ -113,10 +113,10 @@ def test_cases(): print("Race: ", demography["dominant_race"]) print("Emotion: ", demography["dominant_emotion"]) - evaluate( demography.get("age") is not None ) - evaluate( demography.get("gender") is not None ) - evaluate( demography.get("dominant_race") is not None ) - evaluate( demography.get("dominant_emotion") is not None ) + evaluate(demography.get("age") is not None) + evaluate(demography.get("gender") is not None) + evaluate(demography.get("dominant_race") is not None) + evaluate(demography.get("dominant_emotion") is not None) print("-----------------------------------------") @@ -128,20 +128,16 @@ def test_cases(): print("Race: ", demography.get("dominant_race")) print("Emotion: ", demography.get("dominant_emotion")) - evaluate( demography.get("age") is not None ) - evaluate( demography.get("gender") is not None ) - evaluate( demography.get("dominant_race") is None ) - evaluate( demography.get("dominant_emotion") is None ) + evaluate(demography.get("age") is not None) + evaluate(demography.get("gender") is not None) + evaluate(demography.get("dominant_race") is None) + evaluate(demography.get("dominant_emotion") is None) print("-----------------------------------------") - print("Face recognition tests") - - passed_tests = 0; test_cases = 0 + print("Facial recognition tests") for model in models: - #prebuilt_model = DeepFace.build_model(model) - #print(model," is built") for metric in metrics: for instance in dataset: img1 = instance[0] @@ -150,43 +146,32 @@ def test_cases(): resp_obj = DeepFace.verify(img1, img2 , model_name = model - #, model = prebuilt_model , distance_metric = metric) prediction = resp_obj["verified"] distance = round(resp_obj["distance"], 2) threshold = resp_obj["threshold"] - evaluate( prediction == result ) + passed = prediction == result - test_result_label = "failed" - if prediction == result: - passed_tests = passed_tests + 1 + evaluate(passed) + + if passed: test_result_label = "passed" + else: + test_result_label = "failed" if prediction == True: classified_label = "verified" else: classified_label = "unverified" - test_cases = test_cases + 1 - print(img1.split("/")[-1], "-", img2.split("/")[-1], classified_label, "as same person based on", model,"and",metric,". Distance:",distance,", Threshold:", threshold,"(",test_result_label,")") print("--------------------------") #----------------------------------------- - print("Passed unit tests: ",passed_tests," / ",test_cases) - - min_score = 70 - - accuracy = 100 * passed_tests / test_cases - accuracy = round(accuracy, 2) - - print("--------------------------") - - #----------------------------------- print("--------------------------") print("Passing numpy array to analyze function") @@ -195,8 +180,8 @@ def test_cases(): resp_obj = DeepFace.analyze(img) print(resp_obj) - evaluate( resp_obj["age"] > 20 and resp_obj["age"] < 40 ) - evaluate( resp_obj["gender"] == "Woman" ) + evaluate(resp_obj["age"] > 20 and resp_obj["age"] < 40) + evaluate(resp_obj["gender"] == "Woman") print("--------------------------") @@ -208,7 +193,7 @@ def test_cases(): res = DeepFace.verify(img1, img2) print(res) - evaluate( res["verified"] == True ) + evaluate(res["verified"] == True) print("--------------------------") @@ -220,7 +205,7 @@ def test_cases(): print(df.head()) - evaluate( df.shape[0] > 0 ) + evaluate(df.shape[0] > 0) print("--------------------------")