diff --git a/deepface/models/facial_recognition/Buffalo_L.py b/deepface/models/facial_recognition/Buffalo_L.py index ad59169..27930ec 100644 --- a/deepface/models/facial_recognition/Buffalo_L.py +++ b/deepface/models/facial_recognition/Buffalo_L.py @@ -39,14 +39,13 @@ class Buffalo_L(FacialRecognition): logger.info(f"Created directory: {buffalo_l_dir}") weights_path = weight_utils.download_weights_if_necessary( - file_name=model_rel_path, - source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" #pylint: disable=line-too-long + file_name=model_rel_path, + source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" #pylint: disable=line-too-long ) if not os.path.exists(weights_path): raise FileNotFoundError(f"Model file not found at: {weights_path}") - else: - logger.debug(f"Model file found at: {weights_path}") + logger.debug(f"Model file found at: {weights_path}") self.model = get_model(weights_path) self.model.prepare(ctx_id=-1, input_size=self.input_shape) @@ -65,8 +64,7 @@ class Buffalo_L(FacialRecognition): if len(img.shape) == 3: img = np.expand_dims(img, axis=0) # Convert single image to batch of 1 elif len(img.shape) != 4: - raise ValueError("Input must have shape (112, 112, 3) or (batch_size, 112, 112, 3).") - + raise ValueError(f"Input must have shape (112, 112, 3) or (X, 112, 112, 3). Got {img.shape}") # Convert RGB to BGR for the entire batch img = img[:, :, :, ::-1] return img