mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 19:45:21 +00:00
Merge pull request #990 from serengil/feat-task-2901-cleaning-modules
Feat task 2901 cleaning modules
This commit is contained in:
commit
64d33717a9
2
.gitignore
vendored
2
.gitignore
vendored
@ -11,3 +11,5 @@ tests/dataset/*.pkl
|
||||
tests/*.ipynb
|
||||
tests/*.csv
|
||||
*.pyc
|
||||
**/.coverage
|
||||
**/.coverage.*
|
5
Makefile
5
Makefile
@ -2,4 +2,7 @@ test:
|
||||
cd tests && python -m pytest . -s --disable-warnings
|
||||
|
||||
lint:
|
||||
python -m pylint deepface/ --fail-under=10
|
||||
python -m pylint deepface/ --fail-under=10
|
||||
|
||||
coverage:
|
||||
pip install pytest-cov && cd tests && python -m pytest --cov=deepface
|
@ -58,6 +58,7 @@ def verify(
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
@ -83,6 +84,8 @@ def verify(
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace (default is base)
|
||||
|
||||
@ -119,6 +122,7 @@ def verify(
|
||||
distance_metric=distance_metric,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
normalization=normalization,
|
||||
)
|
||||
|
||||
@ -129,6 +133,7 @@ def analyze(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -152,6 +157,8 @@ def analyze(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process
|
||||
(default is False).
|
||||
|
||||
@ -209,6 +216,7 @@ def analyze(
|
||||
enforce_detection=enforce_detection,
|
||||
detector_backend=detector_backend,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
silent=silent,
|
||||
)
|
||||
|
||||
@ -221,6 +229,7 @@ def find(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
@ -249,6 +258,8 @@ def find(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
threshold (float): Specify a threshold to determine whether a pair represents the same
|
||||
person or different individuals. This threshold is used for comparing distances.
|
||||
If left unset, default pre-tuned threshold values will be applied based on the specified
|
||||
@ -286,6 +297,7 @@ def find(
|
||||
enforce_detection=enforce_detection,
|
||||
detector_backend=detector_backend,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
threshold=threshold,
|
||||
normalization=normalization,
|
||||
silent=silent,
|
||||
@ -298,6 +310,7 @@ def represent(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -320,6 +333,8 @@ def represent(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
(default is base).
|
||||
@ -346,6 +361,7 @@ def represent(
|
||||
enforce_detection=enforce_detection,
|
||||
detector_backend=detector_backend,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
normalization=normalization,
|
||||
)
|
||||
|
||||
@ -409,6 +425,7 @@ def extract_faces(
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -429,6 +446,8 @@ def extract_faces(
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
grayscale (boolean): Flag to convert the image to grayscale before
|
||||
processing (default is False).
|
||||
|
||||
@ -448,7 +467,9 @@ def extract_faces(
|
||||
detector_backend=detector_backend,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
grayscale=grayscale,
|
||||
human_readable=True,
|
||||
)
|
||||
|
||||
|
||||
@ -459,3 +480,49 @@ def cli() -> None:
|
||||
import fire
|
||||
|
||||
fire.Fire()
|
||||
|
||||
|
||||
# deprecated function(s)
|
||||
|
||||
|
||||
def detectFace(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> Union[np.ndarray, None]:
|
||||
"""
|
||||
Deprecated face detection function. Use extract_faces for same functionality.
|
||||
|
||||
Args:
|
||||
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
|
||||
target_size (tuple): final shape of facial image. black pixels will be
|
||||
added to resize the image (default is (224, 224)).
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8' (default is opencv).
|
||||
|
||||
enforce_detection (boolean): If no face is detected in an image, raise an exception.
|
||||
Set to False to avoid the exception for low-resolution images (default is True).
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
Returns:
|
||||
img (np.ndarray): detected (and aligned) facial area image as numpy array
|
||||
"""
|
||||
logger.warn("Function detectFace is deprecated. Use extract_faces instead.")
|
||||
face_objs = extract_faces(
|
||||
img_path=img_path,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
grayscale=False,
|
||||
)
|
||||
extracted_face = None
|
||||
if len(face_objs) > 0:
|
||||
extracted_face = face_objs[0]["face"]
|
||||
return extracted_face
|
||||
|
@ -53,6 +53,8 @@ class ArcFaceClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "ArcFace"
|
||||
self.input_shape = (112, 112)
|
||||
self.output_shape = 512
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -49,6 +49,8 @@ class DeepIdClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "DeepId"
|
||||
self.input_shape = (47, 55)
|
||||
self.output_shape = 160
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -20,6 +20,8 @@ class DlibClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = DlibResNet()
|
||||
self.model_name = "Dlib"
|
||||
self.input_shape = (150, 150)
|
||||
self.output_shape = 128
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -53,6 +53,8 @@ class FaceNet128dClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_facenet128d_model()
|
||||
self.model_name = "FaceNet-128d"
|
||||
self.input_shape = (160, 160)
|
||||
self.output_shape = 128
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
@ -75,6 +77,8 @@ class FaceNet512dClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_facenet512d_model()
|
||||
self.model_name = "FaceNet-512d"
|
||||
self.input_shape = (160, 160)
|
||||
self.output_shape = 512
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -46,6 +46,8 @@ class DeepFaceClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "DeepFace"
|
||||
self.input_shape = (152, 152)
|
||||
self.output_shape = 4096
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -36,6 +36,8 @@ class OpenFaceClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "OpenFace"
|
||||
self.input_shape = (96, 96)
|
||||
self.output_shape = 128
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -22,6 +22,8 @@ class SFaceClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "SFace"
|
||||
self.input_shape = (112, 112)
|
||||
self.output_shape = 128
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -43,6 +43,8 @@ class VggFaceClient(FacialRecognition):
|
||||
def __init__(self):
|
||||
self.model = load_model()
|
||||
self.model_name = "VGG-Face"
|
||||
self.input_shape = (224, 224)
|
||||
self.output_shape = 4096
|
||||
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
"""
|
||||
|
@ -2,7 +2,7 @@ from typing import Union
|
||||
import numpy as np
|
||||
|
||||
|
||||
def findCosineDistance(
|
||||
def find_cosine_distance(
|
||||
source_representation: Union[np.ndarray, list], test_representation: Union[np.ndarray, list]
|
||||
) -> np.float64:
|
||||
if isinstance(source_representation, list):
|
||||
@ -17,7 +17,7 @@ def findCosineDistance(
|
||||
return 1 - (a / (np.sqrt(b) * np.sqrt(c)))
|
||||
|
||||
|
||||
def findEuclideanDistance(
|
||||
def find_euclidean_distance(
|
||||
source_representation: Union[np.ndarray, list], test_representation: Union[np.ndarray, list]
|
||||
) -> np.float64:
|
||||
if isinstance(source_representation, list):
|
||||
@ -38,7 +38,7 @@ def l2_normalize(x: Union[np.ndarray, list]) -> np.ndarray:
|
||||
return x / np.sqrt(np.sum(np.multiply(x, x)))
|
||||
|
||||
|
||||
def findThreshold(model_name: str, distance_metric: str) -> float:
|
||||
def find_threshold(model_name: str, distance_metric: str) -> float:
|
||||
|
||||
base_threshold = {"cosine": 0.40, "euclidean": 0.55, "euclidean_l2": 0.75}
|
||||
|
||||
|
@ -1,42 +1,19 @@
|
||||
import os
|
||||
from typing import Union, Tuple, List
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
# 3rd party dependencies
|
||||
from PIL import Image
|
||||
import requests
|
||||
import numpy as np
|
||||
import cv2
|
||||
import tensorflow as tf
|
||||
|
||||
# package dependencies
|
||||
from deepface.detectors import DetectorWrapper
|
||||
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="commons.functions")
|
||||
|
||||
# pylint: disable=no-else-raise
|
||||
|
||||
# --------------------------------------------------
|
||||
# configurations of dependencies
|
||||
|
||||
|
||||
def get_tf_major_version() -> int:
|
||||
return int(tf.__version__.split(".", maxsplit=1)[0])
|
||||
|
||||
|
||||
tf_major_version = get_tf_major_version()
|
||||
|
||||
if tf_major_version == 1:
|
||||
from keras.preprocessing import image
|
||||
elif tf_major_version == 2:
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
def initialize_folder() -> None:
|
||||
"""Initialize the folder for storing weights and models.
|
||||
|
||||
@ -63,293 +40,3 @@ def get_deepface_home() -> str:
|
||||
str: the home directory.
|
||||
"""
|
||||
return str(os.getenv("DEEPFACE_HOME", default=str(Path.home())))
|
||||
|
||||
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
def loadBase64Img(uri: str) -> np.ndarray:
|
||||
"""Load image from base64 string.
|
||||
|
||||
Args:
|
||||
uri: a base64 string.
|
||||
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
encoded_data = uri.split(",")[1]
|
||||
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
|
||||
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_bgr
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return loadBase64Img(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.startswith("http"):
|
||||
return (
|
||||
np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("BGR")),
|
||||
# return url as image name
|
||||
img,
|
||||
)
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
def extract_faces(
|
||||
img: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
grayscale: bool = False,
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> List[Tuple[np.ndarray, dict, float]]:
|
||||
"""
|
||||
Extract faces from an image.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
target_size (tuple, optional): the target size of the extracted faces.
|
||||
Defaults to (224, 224).
|
||||
detector_backend (str, optional): the face detector backend. Defaults to "opencv".
|
||||
grayscale (bool, optional): whether to convert the extracted faces to grayscale.
|
||||
Defaults to False.
|
||||
enforce_detection (bool, optional): whether to enforce face detection. Defaults to True.
|
||||
align (bool, optional): whether to align the extracted faces. Defaults to True.
|
||||
|
||||
Raises:
|
||||
ValueError: if face could not be detected and enforce_detection is True.
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[np.ndarray, dict, float]]): A list of tuples
|
||||
where each tuple contains:
|
||||
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (dict): The image region represented as
|
||||
{"x": x, "y": y, "w": w, "h": h}
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
|
||||
# this is going to store a list of img itself (numpy), it region and confidence
|
||||
extracted_faces = []
|
||||
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img, img_name = load_image(img)
|
||||
|
||||
base_region = FacialAreaRegion(x=0, y=0, w=img.shape[1], h=img.shape[0])
|
||||
|
||||
if detector_backend == "skip":
|
||||
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
|
||||
else:
|
||||
face_objs = DetectorWrapper.detect_faces(detector_backend, img, align)
|
||||
|
||||
# in case of no face found
|
||||
if len(face_objs) == 0 and enforce_detection is True:
|
||||
if img_name is not None:
|
||||
raise ValueError(
|
||||
f"Face could not be detected in {img_name}."
|
||||
"Please confirm that the picture is a face photo "
|
||||
"or consider to set enforce_detection param to False."
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Face could not be detected. Please confirm that the picture is a face photo "
|
||||
"or consider to set enforce_detection param to False."
|
||||
)
|
||||
|
||||
if len(face_objs) == 0 and enforce_detection is False:
|
||||
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
|
||||
|
||||
for face_obj in face_objs:
|
||||
current_img = face_obj.img
|
||||
current_region = face_obj.facial_area
|
||||
confidence = face_obj.confidence
|
||||
if current_img.shape[0] > 0 and current_img.shape[1] > 0:
|
||||
if grayscale is True:
|
||||
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# resize and padding
|
||||
factor_0 = target_size[0] / current_img.shape[0]
|
||||
factor_1 = target_size[1] / current_img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
|
||||
dsize = (
|
||||
int(current_img.shape[1] * factor),
|
||||
int(current_img.shape[0] * factor),
|
||||
)
|
||||
current_img = cv2.resize(current_img, dsize)
|
||||
|
||||
diff_0 = target_size[0] - current_img.shape[0]
|
||||
diff_1 = target_size[1] - current_img.shape[1]
|
||||
if grayscale is False:
|
||||
# Put the base image in the middle of the padded image
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
(0, 0),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
else:
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
|
||||
# double check: if target image is not still the same size with target.
|
||||
if current_img.shape[0:2] != target_size:
|
||||
current_img = cv2.resize(current_img, target_size)
|
||||
|
||||
# normalizing the image pixels
|
||||
# what this line doing? must?
|
||||
img_pixels = image.img_to_array(current_img)
|
||||
img_pixels = np.expand_dims(img_pixels, axis=0)
|
||||
img_pixels /= 255 # normalize input in [0, 1]
|
||||
|
||||
# int cast is for the exception - object of type 'float32' is not JSON serializable
|
||||
region_obj = {
|
||||
"x": current_region.x,
|
||||
"y": current_region.y,
|
||||
"w": current_region.w,
|
||||
"h": current_region.h,
|
||||
}
|
||||
|
||||
extracted_face = (img_pixels, region_obj, confidence)
|
||||
extracted_faces.append(extracted_face)
|
||||
|
||||
if len(extracted_faces) == 0 and enforce_detection == True:
|
||||
raise ValueError(
|
||||
f"Detected face shape is {img.shape}. Consider to set enforce_detection arg to False."
|
||||
)
|
||||
|
||||
return extracted_faces
|
||||
|
||||
|
||||
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
||||
"""Normalize input image.
|
||||
|
||||
Args:
|
||||
img (numpy array): the input image.
|
||||
normalization (str, optional): the normalization technique. Defaults to "base",
|
||||
for no normalization.
|
||||
|
||||
Returns:
|
||||
numpy array: the normalized image.
|
||||
"""
|
||||
|
||||
# issue 131 declares that some normalization techniques improves the accuracy
|
||||
|
||||
if normalization == "base":
|
||||
return img
|
||||
|
||||
# @trevorgribble and @davedgd contributed this feature
|
||||
# restore input in scale of [0, 255] because it was normalized in scale of
|
||||
# [0, 1] in preprocess_face
|
||||
img *= 255
|
||||
|
||||
if normalization == "raw":
|
||||
pass # return just restored pixels
|
||||
|
||||
elif normalization == "Facenet":
|
||||
mean, std = img.mean(), img.std()
|
||||
img = (img - mean) / std
|
||||
|
||||
elif normalization == "Facenet2018":
|
||||
# simply / 127.5 - 1 (similar to facenet 2018 model preprocessing step as @iamrishab posted)
|
||||
img /= 127.5
|
||||
img -= 1
|
||||
|
||||
elif normalization == "VGGFace":
|
||||
# mean subtraction based on VGGFace1 training data
|
||||
img[..., 0] -= 93.5940
|
||||
img[..., 1] -= 104.7624
|
||||
img[..., 2] -= 129.1863
|
||||
|
||||
elif normalization == "VGGFace2":
|
||||
# mean subtraction based on VGGFace2 training data
|
||||
img[..., 0] -= 91.4953
|
||||
img[..., 1] -= 103.8827
|
||||
img[..., 2] -= 131.0912
|
||||
|
||||
elif normalization == "ArcFace":
|
||||
# Reference study: The faces are cropped and resized to 112×112,
|
||||
# and each pixel (ranged between [0, 255]) in RGB images is normalised
|
||||
# by subtracting 127.5 then divided by 128.
|
||||
img -= 127.5
|
||||
img /= 128
|
||||
else:
|
||||
raise ValueError(f"unimplemented normalization type - {normalization}")
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def find_target_size(model_name: str) -> tuple:
|
||||
"""Find the target size of the model.
|
||||
|
||||
Args:
|
||||
model_name (str): the model name.
|
||||
|
||||
Returns:
|
||||
tuple: the target size.
|
||||
"""
|
||||
|
||||
target_sizes = {
|
||||
"VGG-Face": (224, 224),
|
||||
"Facenet": (160, 160),
|
||||
"Facenet512": (160, 160),
|
||||
"OpenFace": (96, 96),
|
||||
"DeepFace": (152, 152),
|
||||
"DeepID": (47, 55),
|
||||
"Dlib": (150, 150),
|
||||
"ArcFace": (112, 112),
|
||||
"SFace": (112, 112),
|
||||
}
|
||||
|
||||
target_size = target_sizes.get(model_name)
|
||||
|
||||
if target_size == None:
|
||||
raise ValueError(f"unimplemented model name - {model_name}")
|
||||
|
||||
return target_size
|
||||
|
@ -12,6 +12,9 @@ from deepface.detectors import (
|
||||
Yolo,
|
||||
YuNet,
|
||||
)
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="deepface/detectors/DetectorWrapper.py")
|
||||
|
||||
|
||||
def build_model(detector_backend: str) -> Any:
|
||||
@ -52,19 +55,35 @@ def build_model(detector_backend: str) -> Any:
|
||||
return face_detector_obj[detector_backend]
|
||||
|
||||
|
||||
def detect_faces(detector_backend: str, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect face(s) from a given image
|
||||
Args:
|
||||
detector_backend (str): detector name
|
||||
|
||||
img (np.ndarray): pre-loaded image
|
||||
alig (bool): enable or disable alignment after detection
|
||||
|
||||
align (bool): enable or disable alignment after detection
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
face_detector: Detector = build_model(detector_backend)
|
||||
return face_detector.detect_faces(img=img, align=align)
|
||||
if expand_percentage < 0:
|
||||
logger.warn(
|
||||
f"Expand percentage cannot be negative but you set it to {expand_percentage}."
|
||||
"Overwritten it to 0."
|
||||
)
|
||||
expand_percentage = 0
|
||||
return face_detector.detect_faces(img=img, align=align, expand_percentage=expand_percentage)
|
||||
|
@ -56,18 +56,27 @@ class DlibClient(Detector):
|
||||
detector["sp"] = sp
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with dlib
|
||||
|
||||
Args:
|
||||
face_detector (Any): dlib face detector object
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace objects
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
# this is not a must dependency. do not import it in the global level.
|
||||
@ -79,6 +88,12 @@ class DlibClient(Detector):
|
||||
"Please install using 'pip install dlib' "
|
||||
) from e
|
||||
|
||||
if expand_percentage != 0:
|
||||
logger.warn(
|
||||
f"You set expand_percentage argument to {expand_percentage},"
|
||||
"but dlib hog handles detection by itself"
|
||||
)
|
||||
|
||||
resp = []
|
||||
|
||||
sp = self.model["sp"]
|
||||
|
@ -12,17 +12,27 @@ class FastMtCnnClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace objects
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -37,7 +47,16 @@ class FastMtCnnClient(Detector):
|
||||
|
||||
for current_detection in zip(*detections):
|
||||
x, y, w, h = xyxy_to_xywh(current_detection[0])
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = current_detection[1]
|
||||
|
||||
|
@ -29,17 +29,27 @@ class MediaPipeClient(Detector):
|
||||
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.7)
|
||||
return face_detection
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with mediapipe
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace): A list of DetectedFace objects
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -74,7 +84,16 @@ class MediaPipeClient(Detector):
|
||||
# left_ear = (int(landmarks[5].x * img_width), int(landmarks[5].y * img_height))
|
||||
|
||||
if x > 0 and y > 0:
|
||||
detected_face = img[y : y + h, x : x + w]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
|
||||
if align:
|
||||
|
@ -1,5 +1,4 @@
|
||||
from typing import List
|
||||
import cv2
|
||||
import numpy as np
|
||||
from mtcnn import MTCNN
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
@ -14,17 +13,27 @@ class MtCnnClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = MTCNN()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace objects
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
|
||||
@ -32,14 +41,25 @@ class MtCnnClient(Detector):
|
||||
|
||||
detected_face = None
|
||||
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB but OpenCV read BGR
|
||||
# mtcnn expects RGB but OpenCV read BGR
|
||||
# img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img_rgb = img[:, :, ::-1]
|
||||
detections = self.model.detect_faces(img_rgb)
|
||||
|
||||
if detections is not None and len(detections) > 0:
|
||||
|
||||
for current_detection in detections:
|
||||
x, y, w, h = current_detection["box"]
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = current_detection["confidence"]
|
||||
|
||||
|
@ -25,18 +25,27 @@ class OpenCvClient(Detector):
|
||||
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with opencv
|
||||
|
||||
Args:
|
||||
face_detector (Any): opencv face detector object
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -56,7 +65,15 @@ class OpenCvClient(Detector):
|
||||
|
||||
if len(faces) > 0:
|
||||
for (x, y, w, h), confidence in zip(faces, scores):
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
left_eye, right_eye = self.find_eyes(img=detected_face)
|
||||
|
@ -9,17 +9,27 @@ class RetinaFaceClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = rf.build_model()
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with retinaface
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace object
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -38,10 +48,14 @@ class RetinaFaceClient(Detector):
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = identity["score"]
|
||||
|
||||
# detected_face = img[int(y):int(y+h), int(x):int(x+w)] #opencv
|
||||
detected_face = img[
|
||||
facial_area[1] : facial_area[3], facial_area[0] : facial_area[2]
|
||||
]
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
landmarks = identity["landmarks"]
|
||||
|
@ -71,17 +71,27 @@ class SsdClient(Detector):
|
||||
|
||||
return detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with ssd
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace object
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -92,16 +102,14 @@ class SsdClient(Detector):
|
||||
|
||||
target_size = (300, 300)
|
||||
|
||||
base_img = img.copy() # we will restore base_img to img later
|
||||
|
||||
original_size = img.shape
|
||||
|
||||
img = cv2.resize(img, target_size)
|
||||
current_img = cv2.resize(img, target_size)
|
||||
|
||||
aspect_ratio_x = original_size[1] / target_size[1]
|
||||
aspect_ratio_y = original_size[0] / target_size[0]
|
||||
|
||||
imageBlob = cv2.dnn.blobFromImage(image=img)
|
||||
imageBlob = cv2.dnn.blobFromImage(image=current_img)
|
||||
|
||||
face_detector = self.model["face_detector"]
|
||||
face_detector.setInput(imageBlob)
|
||||
@ -126,17 +134,21 @@ class SsdClient(Detector):
|
||||
bottom = instance["bottom"]
|
||||
top = instance["top"]
|
||||
|
||||
detected_face = base_img[
|
||||
int(top * aspect_ratio_y) : int(bottom * aspect_ratio_y),
|
||||
int(left * aspect_ratio_x) : int(right * aspect_ratio_x),
|
||||
]
|
||||
x = int(left * aspect_ratio_x)
|
||||
y = int(top * aspect_ratio_y)
|
||||
w = int(right * aspect_ratio_x) - int(left * aspect_ratio_x)
|
||||
h = int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y)
|
||||
|
||||
face_region = FacialAreaRegion(
|
||||
x=int(left * aspect_ratio_x),
|
||||
y=int(top * aspect_ratio_y),
|
||||
w=int(right * aspect_ratio_x) - int(left * aspect_ratio_x),
|
||||
h=int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y),
|
||||
)
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
face_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
|
||||
confidence = instance["confidence"]
|
||||
|
||||
|
@ -51,18 +51,27 @@ class YoloClient(Detector):
|
||||
# Return face_detector
|
||||
return YOLO(weight_path)
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = False) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = False, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with yolo
|
||||
|
||||
Args:
|
||||
face_detector (Any): yolo face detector object
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
resp = []
|
||||
@ -78,7 +87,15 @@ class YoloClient(Detector):
|
||||
|
||||
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
|
||||
region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
detected_face = img[y : y + h, x : x + w].copy()
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
# Tuple of x,y and confidence for left eye
|
||||
|
@ -49,17 +49,27 @@ class YuNetClient(Detector):
|
||||
) from err
|
||||
return face_detector
|
||||
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
"""
|
||||
Detect and align face with yunet
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image
|
||||
align (bool): default is true
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace objects
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
# FaceDetector.detect_faces does not support score_threshold parameter.
|
||||
@ -115,7 +125,16 @@ class YuNetClient(Detector):
|
||||
)
|
||||
confidence = face[-1]
|
||||
confidence = f"{confidence:.2f}"
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
if align:
|
||||
detected_face = detection.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
||||
|
@ -8,19 +8,28 @@ import numpy as np
|
||||
# pylint: disable=unnecessary-pass, too-few-public-methods
|
||||
class Detector(ABC):
|
||||
@abstractmethod
|
||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> List["DetectedFace"]:
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List["DetectedFace"]:
|
||||
"""
|
||||
Detect faces from a given image
|
||||
Interface for detect and align face
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as a NumPy array
|
||||
align (bool): enable or disable alignment after face detection
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[DetectedFace]): A list of DetectedFace object
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
- face (np.ndarray): The detected face as a NumPy array.
|
||||
- face_region (List[float]): The image region represented as
|
||||
a list of floats e.g. [x, y, w, h]
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Union, List
|
||||
from typing import Any, Union, List, Tuple
|
||||
import numpy as np
|
||||
from deepface.commons import functions
|
||||
|
||||
@ -15,6 +15,9 @@ else:
|
||||
class FacialRecognition(ABC):
|
||||
model: Union[Model, Any]
|
||||
model_name: str
|
||||
input_shape: Tuple[int, int]
|
||||
output_shape: int
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||
|
@ -6,8 +6,7 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import modeling
|
||||
from deepface.commons import functions
|
||||
from deepface.modules import modeling, detection
|
||||
from deepface.extendedmodels import Gender, Race, Emotion
|
||||
|
||||
|
||||
@ -17,6 +16,7 @@ def analyze(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -41,6 +41,8 @@ def analyze(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
silent (boolean): Suppress or allow some log messages for a quieter analysis process
|
||||
(default is False).
|
||||
|
||||
@ -114,16 +116,20 @@ def analyze(
|
||||
# ---------------------------------
|
||||
resp_objects = []
|
||||
|
||||
img_objs = functions.extract_faces(
|
||||
img=img_path,
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=img_path,
|
||||
target_size=(224, 224),
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
|
||||
for img_content, img_region, img_confidence in img_objs:
|
||||
for img_obj in img_objs:
|
||||
img_content = img_obj["face"]
|
||||
img_region = img_obj["facial_area"]
|
||||
img_confidence = img_obj["confidence"]
|
||||
if img_content.shape[0] > 0 and img_content.shape[1] > 0:
|
||||
obj = {}
|
||||
# facial attribute analysis
|
||||
|
@ -3,10 +3,26 @@ from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
# 3rd part dependencies
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import preprocessing
|
||||
from deepface.models.Detector import DetectedFace, FacialAreaRegion
|
||||
from deepface.detectors import DetectorWrapper
|
||||
from deepface.commons import functions
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="deepface/modules/detection.py")
|
||||
|
||||
# pylint: disable=no-else-raise
|
||||
|
||||
|
||||
tf_major_version = functions.get_tf_major_version()
|
||||
if tf_major_version == 1:
|
||||
from keras.preprocessing import image
|
||||
elif tf_major_version == 2:
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
|
||||
def extract_faces(
|
||||
@ -15,7 +31,9 @@ def extract_faces(
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
human_readable=False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract faces from a given image
|
||||
@ -35,9 +53,13 @@ def extract_faces(
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
grayscale (boolean): Flag to convert the image to grayscale before
|
||||
processing (default is False).
|
||||
|
||||
human_readable (bool): Flag to make the image human readable. 3D RGB for human readable
|
||||
or 4D BGR for ML models (default is False).
|
||||
|
||||
Returns:
|
||||
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
|
||||
@ -48,27 +70,113 @@ def extract_faces(
|
||||
|
||||
resp_objs = []
|
||||
|
||||
img_objs = functions.extract_faces(
|
||||
img=img_path,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=grayscale,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
)
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img, img_name = preprocessing.load_image(img_path)
|
||||
|
||||
for img, region, confidence in img_objs:
|
||||
resp_obj = {}
|
||||
base_region = FacialAreaRegion(x=0, y=0, w=img.shape[1], h=img.shape[0])
|
||||
|
||||
if detector_backend == "skip":
|
||||
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
|
||||
else:
|
||||
face_objs = DetectorWrapper.detect_faces(
|
||||
detector_backend=detector_backend,
|
||||
img=img,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
|
||||
# in case of no face found
|
||||
if len(face_objs) == 0 and enforce_detection is True:
|
||||
if img_name is not None:
|
||||
raise ValueError(
|
||||
f"Face could not be detected in {img_name}."
|
||||
"Please confirm that the picture is a face photo "
|
||||
"or consider to set enforce_detection param to False."
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Face could not be detected. Please confirm that the picture is a face photo "
|
||||
"or consider to set enforce_detection param to False."
|
||||
)
|
||||
|
||||
if len(face_objs) == 0 and enforce_detection is False:
|
||||
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
|
||||
|
||||
for face_obj in face_objs:
|
||||
current_img = face_obj.img
|
||||
current_region = face_obj.facial_area
|
||||
confidence = face_obj.confidence
|
||||
|
||||
if current_img.shape[0] == 0 or current_img.shape[1] == 0:
|
||||
continue
|
||||
|
||||
if grayscale is True:
|
||||
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# resize and padding
|
||||
factor_0 = target_size[0] / current_img.shape[0]
|
||||
factor_1 = target_size[1] / current_img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
|
||||
dsize = (
|
||||
int(current_img.shape[1] * factor),
|
||||
int(current_img.shape[0] * factor),
|
||||
)
|
||||
current_img = cv2.resize(current_img, dsize)
|
||||
|
||||
diff_0 = target_size[0] - current_img.shape[0]
|
||||
diff_1 = target_size[1] - current_img.shape[1]
|
||||
if grayscale is False:
|
||||
# Put the base image in the middle of the padded image
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
(0, 0),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
else:
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
|
||||
# double check: if target image is not still the same size with target.
|
||||
if current_img.shape[0:2] != target_size:
|
||||
current_img = cv2.resize(current_img, target_size)
|
||||
|
||||
# normalizing the image pixels
|
||||
# what this line doing? must?
|
||||
img_pixels = image.img_to_array(current_img)
|
||||
img_pixels = np.expand_dims(img_pixels, axis=0)
|
||||
img_pixels /= 255 # normalize input in [0, 1]
|
||||
# discard expanded dimension
|
||||
if len(img.shape) == 4:
|
||||
img = img[0]
|
||||
if human_readable is True and len(img_pixels.shape) == 4:
|
||||
img_pixels = img_pixels[0]
|
||||
|
||||
# bgr to rgb
|
||||
resp_obj["face"] = img[:, :, ::-1]
|
||||
resp_obj["facial_area"] = region
|
||||
resp_obj["confidence"] = confidence
|
||||
resp_objs.append(resp_obj)
|
||||
resp_objs.append(
|
||||
{
|
||||
"face": img_pixels[:, :, ::-1] if human_readable is True else img_pixels,
|
||||
"facial_area": {
|
||||
"x": current_region.x,
|
||||
"y": current_region.y,
|
||||
"w": current_region.w,
|
||||
"h": current_region.h,
|
||||
},
|
||||
"confidence": confidence,
|
||||
}
|
||||
)
|
||||
|
||||
if len(resp_objs) == 0 and enforce_detection == True:
|
||||
raise ValueError(
|
||||
f"Detected face shape is {img.shape}. Consider to set enforce_detection arg to False."
|
||||
)
|
||||
|
||||
return resp_objs
|
||||
|
||||
|
131
deepface/modules/preprocessing.py
Normal file
131
deepface/modules/preprocessing.py
Normal file
@ -0,0 +1,131 @@
|
||||
import os
|
||||
from typing import Union, Tuple
|
||||
import base64
|
||||
from pathlib import Path
|
||||
|
||||
# 3rd party
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
"""
|
||||
|
||||
# The image is already a numpy array
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
if not isinstance(img, str):
|
||||
raise ValueError(f"img must be numpy array or str but it is {type(img)}")
|
||||
|
||||
# The image is a base64 string
|
||||
if img.startswith("data:image/"):
|
||||
return load_base64(img), "base64 encoded string"
|
||||
|
||||
# The image is a url
|
||||
if img.startswith("http"):
|
||||
return (
|
||||
np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("BGR")),
|
||||
# return url as image name
|
||||
img,
|
||||
)
|
||||
|
||||
# The image is a path
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
# image must be a file on the system then
|
||||
|
||||
# image name must have english characters
|
||||
if img.isascii() is False:
|
||||
raise ValueError(f"Input image must not have non-english characters - {img}")
|
||||
|
||||
img_obj_bgr = cv2.imread(img)
|
||||
# img_obj_rgb = cv2.cvtColor(img_obj_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def load_base64(uri: str) -> np.ndarray:
|
||||
"""Load image from base64 string.
|
||||
|
||||
Args:
|
||||
uri: a base64 string.
|
||||
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
encoded_data = uri.split(",")[1]
|
||||
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
|
||||
img_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
||||
return img_bgr
|
||||
|
||||
|
||||
def normalize_input(img: np.ndarray, normalization: str = "base") -> np.ndarray:
|
||||
"""Normalize input image.
|
||||
|
||||
Args:
|
||||
img (numpy array): the input image.
|
||||
normalization (str, optional): the normalization technique. Defaults to "base",
|
||||
for no normalization.
|
||||
|
||||
Returns:
|
||||
numpy array: the normalized image.
|
||||
"""
|
||||
|
||||
# issue 131 declares that some normalization techniques improves the accuracy
|
||||
|
||||
if normalization == "base":
|
||||
return img
|
||||
|
||||
# @trevorgribble and @davedgd contributed this feature
|
||||
# restore input in scale of [0, 255] because it was normalized in scale of
|
||||
# [0, 1] in preprocess_face
|
||||
img *= 255
|
||||
|
||||
if normalization == "raw":
|
||||
pass # return just restored pixels
|
||||
|
||||
elif normalization == "Facenet":
|
||||
mean, std = img.mean(), img.std()
|
||||
img = (img - mean) / std
|
||||
|
||||
elif normalization == "Facenet2018":
|
||||
# simply / 127.5 - 1 (similar to facenet 2018 model preprocessing step as @iamrishab posted)
|
||||
img /= 127.5
|
||||
img -= 1
|
||||
|
||||
elif normalization == "VGGFace":
|
||||
# mean subtraction based on VGGFace1 training data
|
||||
img[..., 0] -= 93.5940
|
||||
img[..., 1] -= 104.7624
|
||||
img[..., 2] -= 129.1863
|
||||
|
||||
elif normalization == "VGGFace2":
|
||||
# mean subtraction based on VGGFace2 training data
|
||||
img[..., 0] -= 91.4953
|
||||
img[..., 1] -= 103.8827
|
||||
img[..., 2] -= 131.0912
|
||||
|
||||
elif normalization == "ArcFace":
|
||||
# Reference study: The faces are cropped and resized to 112×112,
|
||||
# and each pixel (ranged between [0, 255]) in RGB images is normalised
|
||||
# by subtracting 127.5 then divided by 128.
|
||||
img -= 127.5
|
||||
img /= 128
|
||||
else:
|
||||
raise ValueError(f"unimplemented normalization type - {normalization}")
|
||||
|
||||
return img
|
@ -4,7 +4,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="commons.realtime")
|
||||
@ -32,12 +32,13 @@ def analysis(
|
||||
enable_emotion = True
|
||||
enable_age_gender = True
|
||||
# ------------------------
|
||||
# find custom values for this input set
|
||||
target_size = functions.find_target_size(model_name=model_name)
|
||||
# ------------------------
|
||||
# build models once to store them in the memory
|
||||
# otherwise, they will be built after cam started and this will cause delays
|
||||
DeepFace.build_model(model_name=model_name)
|
||||
model: FacialRecognition = DeepFace.build_model(model_name=model_name)
|
||||
|
||||
# find custom values for this input set
|
||||
target_size = model.input_shape
|
||||
|
||||
logger.info(f"facial recognition model {model_name} is just built")
|
||||
|
||||
if enable_face_analysis:
|
||||
|
@ -10,9 +10,10 @@ import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import functions, distance as dst
|
||||
from deepface.commons import distance as dst
|
||||
from deepface.commons.logger import Logger
|
||||
from deepface.modules import representation
|
||||
from deepface.modules import representation, detection, modeling
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
|
||||
logger = Logger(module="deepface/modules/recognition.py")
|
||||
|
||||
@ -25,6 +26,7 @@ def find(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
@ -54,6 +56,8 @@ def find(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
threshold (float): Specify a threshold to determine whether a pair represents the same
|
||||
person or different individuals. This threshold is used for comparing distances.
|
||||
If left unset, default pre-tuned threshold values will be applied based on the specified
|
||||
@ -89,7 +93,8 @@ def find(
|
||||
if os.path.isdir(db_path) is not True:
|
||||
raise ValueError("Passed db_path does not exist!")
|
||||
|
||||
target_size = functions.find_target_size(model_name=model_name)
|
||||
model: FacialRecognition = modeling.build_model(model_name)
|
||||
target_size = model.input_shape
|
||||
|
||||
# ---------------------------------------
|
||||
|
||||
@ -202,18 +207,21 @@ def find(
|
||||
)
|
||||
|
||||
# img path might have more than once face
|
||||
source_objs = functions.extract_faces(
|
||||
img=img_path,
|
||||
source_objs = detection.extract_faces(
|
||||
img_path=img_path,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
|
||||
resp_obj = []
|
||||
|
||||
for source_img, source_region, _ in source_objs:
|
||||
for source_obj in source_objs:
|
||||
source_img = source_obj["face"]
|
||||
source_region = source_obj["facial_area"]
|
||||
target_embedding_obj = representation.represent(
|
||||
img_path=source_img,
|
||||
model_name=model_name,
|
||||
@ -245,11 +253,11 @@ def find(
|
||||
)
|
||||
|
||||
if distance_metric == "cosine":
|
||||
distance = dst.findCosineDistance(source_representation, target_representation)
|
||||
distance = dst.find_cosine_distance(source_representation, target_representation)
|
||||
elif distance_metric == "euclidean":
|
||||
distance = dst.findEuclideanDistance(source_representation, target_representation)
|
||||
distance = dst.find_euclidean_distance(source_representation, target_representation)
|
||||
elif distance_metric == "euclidean_l2":
|
||||
distance = dst.findEuclideanDistance(
|
||||
distance = dst.find_euclidean_distance(
|
||||
dst.l2_normalize(source_representation),
|
||||
dst.l2_normalize(target_representation),
|
||||
)
|
||||
@ -259,7 +267,7 @@ def find(
|
||||
distances.append(distance)
|
||||
|
||||
# ---------------------------
|
||||
target_threshold = threshold or dst.findThreshold(model_name, distance_metric)
|
||||
target_threshold = threshold or dst.find_threshold(model_name, distance_metric)
|
||||
|
||||
result_df["threshold"] = target_threshold
|
||||
result_df["distance"] = distances
|
||||
@ -305,6 +313,7 @@ def __find_bulk_embeddings(
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
):
|
||||
@ -313,15 +322,24 @@ def __find_bulk_embeddings(
|
||||
|
||||
Args:
|
||||
employees (list): list of exact image paths
|
||||
|
||||
model_name (str): facial recognition model name
|
||||
target_size (tuple): expected input shape of facial
|
||||
recognition model
|
||||
|
||||
target_size (tuple): expected input shape of facial recognition model
|
||||
|
||||
detector_backend (str): face detector model name
|
||||
|
||||
enforce_detection (bool): set this to False if you
|
||||
want to proceed when you cannot detect any face
|
||||
|
||||
align (bool): enable or disable alignment of image
|
||||
before feeding to facial recognition model
|
||||
|
||||
expand_percentage (int): expand detected facial area with a
|
||||
percentage (default is 0).
|
||||
|
||||
normalization (bool): normalization technique
|
||||
|
||||
silent (bool): enable or disable informative logging
|
||||
Returns:
|
||||
representations (list): pivot list of embeddings with
|
||||
@ -333,16 +351,19 @@ def __find_bulk_embeddings(
|
||||
desc="Finding representations",
|
||||
disable=silent,
|
||||
):
|
||||
img_objs = functions.extract_faces(
|
||||
img=employee,
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=employee,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
|
||||
for img_content, img_region, _ in img_objs:
|
||||
for img_obj in img_objs:
|
||||
img_content = img_obj["face"]
|
||||
img_region = img_obj["facial_area"]
|
||||
embedding_obj = representation.represent(
|
||||
img_path=img_content,
|
||||
model_name=model_name,
|
||||
|
@ -6,8 +6,7 @@ import numpy as np
|
||||
import cv2
|
||||
|
||||
# project dependencies
|
||||
from deepface.modules import modeling
|
||||
from deepface.commons import functions
|
||||
from deepface.modules import modeling, detection, preprocessing
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
|
||||
|
||||
@ -17,6 +16,7 @@ def represent(
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -38,6 +38,8 @@ def represent(
|
||||
|
||||
align (boolean): Perform alignment based on the eye positions.
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
|
||||
|
||||
@ -61,19 +63,20 @@ def represent(
|
||||
|
||||
# ---------------------------------
|
||||
# we have run pre-process in verification. so, this can be skipped if it is coming from verify.
|
||||
target_size = functions.find_target_size(model_name=model_name)
|
||||
target_size = model.input_shape
|
||||
if detector_backend != "skip":
|
||||
img_objs = functions.extract_faces(
|
||||
img=img_path,
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=img_path,
|
||||
target_size=(target_size[1], target_size[0]),
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
else: # skip
|
||||
# Try load. If load error, will raise exception internal
|
||||
img, _ = functions.load_image(img_path)
|
||||
img, _ = preprocessing.load_image(img_path)
|
||||
# --------------------------------
|
||||
if len(img.shape) == 4:
|
||||
img = img[0] # e.g. (1, 224, 224, 3) to (224, 224, 3)
|
||||
@ -85,13 +88,21 @@ def represent(
|
||||
img = (img.astype(np.float32) / 255.0).astype(np.float32)
|
||||
# --------------------------------
|
||||
# make dummy region and confidence to keep compatibility with `extract_faces`
|
||||
img_region = {"x": 0, "y": 0, "w": img.shape[1], "h": img.shape[2]}
|
||||
img_objs = [(img, img_region, 0)]
|
||||
img_objs = [
|
||||
{
|
||||
"face": img,
|
||||
"facial_area": {"x": 0, "y": 0, "w": img.shape[1], "h": img.shape[2]},
|
||||
"confidence": 0,
|
||||
}
|
||||
]
|
||||
# ---------------------------------
|
||||
|
||||
for img, region, confidence in img_objs:
|
||||
for img_obj in img_objs:
|
||||
img = img_obj["face"]
|
||||
region = img_obj["facial_area"]
|
||||
confidence = img_obj["confidence"]
|
||||
# custom normalization
|
||||
img = functions.normalize_input(img=img, normalization=normalization)
|
||||
img = preprocessing.normalize_input(img=img, normalization=normalization)
|
||||
|
||||
embedding = model.find_embeddings(img)
|
||||
|
||||
|
@ -6,8 +6,9 @@ from typing import Any, Dict, Union
|
||||
import numpy as np
|
||||
|
||||
# project dependencies
|
||||
from deepface.commons import functions, distance as dst
|
||||
from deepface.modules import representation
|
||||
from deepface.commons import distance as dst
|
||||
from deepface.modules import representation, detection, modeling
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
|
||||
|
||||
def verify(
|
||||
@ -18,6 +19,7 @@ def verify(
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
@ -48,6 +50,8 @@ def verify(
|
||||
|
||||
align (bool): Flag to enable face alignment (default is True).
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage (default is 0).
|
||||
|
||||
normalization (string): Normalize the input image before feeding it to the model.
|
||||
Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace (default is base)
|
||||
|
||||
@ -79,32 +83,39 @@ def verify(
|
||||
tic = time.time()
|
||||
|
||||
# --------------------------------
|
||||
target_size = functions.find_target_size(model_name=model_name)
|
||||
model: FacialRecognition = modeling.build_model(model_name)
|
||||
target_size = model.input_shape
|
||||
|
||||
# img pairs might have many faces
|
||||
img1_objs = functions.extract_faces(
|
||||
img=img1_path,
|
||||
img1_objs = detection.extract_faces(
|
||||
img_path=img1_path,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
|
||||
img2_objs = functions.extract_faces(
|
||||
img=img2_path,
|
||||
img2_objs = detection.extract_faces(
|
||||
img_path=img2_path,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
# --------------------------------
|
||||
distances = []
|
||||
regions = []
|
||||
# now we will find the face pair with minimum distance
|
||||
for img1_content, img1_region, _ in img1_objs:
|
||||
for img2_content, img2_region, _ in img2_objs:
|
||||
for img1_obj in img1_objs:
|
||||
img1_content = img1_obj["face"]
|
||||
img1_region = img1_obj["facial_area"]
|
||||
for img2_obj in img2_objs:
|
||||
img2_content = img2_obj["face"]
|
||||
img2_region = img2_obj["facial_area"]
|
||||
img1_embedding_obj = representation.represent(
|
||||
img_path=img1_content,
|
||||
model_name=model_name,
|
||||
@ -127,11 +138,11 @@ def verify(
|
||||
img2_representation = img2_embedding_obj[0]["embedding"]
|
||||
|
||||
if distance_metric == "cosine":
|
||||
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
||||
distance = dst.find_cosine_distance(img1_representation, img2_representation)
|
||||
elif distance_metric == "euclidean":
|
||||
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
||||
distance = dst.find_euclidean_distance(img1_representation, img2_representation)
|
||||
elif distance_metric == "euclidean_l2":
|
||||
distance = dst.findEuclideanDistance(
|
||||
distance = dst.find_euclidean_distance(
|
||||
dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)
|
||||
)
|
||||
else:
|
||||
@ -141,7 +152,7 @@ def verify(
|
||||
regions.append((img1_region, img2_region))
|
||||
|
||||
# -------------------------------
|
||||
threshold = dst.findThreshold(model_name, distance_metric)
|
||||
threshold = dst.find_threshold(model_name, distance_metric)
|
||||
distance = min(distances) # best distance
|
||||
facial_areas = regions[np.argmin(distances)]
|
||||
|
||||
|
@ -1,7 +1,8 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from deepface import DeepFace
|
||||
from deepface.commons import functions
|
||||
from deepface.commons import distance
|
||||
from deepface.models.FacialRecognition import FacialRecognition
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger()
|
||||
@ -11,9 +12,9 @@ logger = Logger()
|
||||
|
||||
model_name = "VGG-Face"
|
||||
|
||||
model = DeepFace.build_model(model_name=model_name)
|
||||
model: FacialRecognition = DeepFace.build_model(model_name=model_name)
|
||||
|
||||
target_size = functions.find_target_size(model_name)
|
||||
target_size = model.input_shape
|
||||
|
||||
logger.info(f"target_size: {target_size}")
|
||||
|
||||
@ -22,21 +23,34 @@ logger.info(f"target_size: {target_size}")
|
||||
|
||||
img1 = DeepFace.extract_faces(img_path="dataset/img1.jpg", target_size=target_size)[0]["face"]
|
||||
img1 = np.expand_dims(img1, axis=0) # to (1, 224, 224, 3)
|
||||
img1_representation = model.predict(img1)[0, :]
|
||||
img1_representation = model.find_embeddings(img1)
|
||||
|
||||
img2 = DeepFace.extract_faces(img_path="dataset/img3.jpg", target_size=target_size)[0]["face"]
|
||||
img2 = np.expand_dims(img2, axis=0)
|
||||
img2_representation = model.predict(img2)[0, :]
|
||||
img2_representation = model.find_embeddings(img2)
|
||||
|
||||
img1_representation = np.array(img1_representation)
|
||||
img2_representation = np.array(img2_representation)
|
||||
|
||||
# ----------------------------------------------
|
||||
# distance between two images
|
||||
|
||||
# distance between two images - euclidean distance formula
|
||||
distance_vector = np.square(img1_representation - img2_representation)
|
||||
logger.debug(distance_vector)
|
||||
current_distance = np.sqrt(distance_vector.sum())
|
||||
logger.info(f"Euclidean distance: {current_distance}")
|
||||
|
||||
distance = np.sqrt(distance_vector.sum())
|
||||
logger.info(f"Euclidean distance: {distance}")
|
||||
threshold = distance.find_threshold(model_name=model_name, distance_metric="euclidean")
|
||||
logger.info(f"Threshold for {model_name}-euclidean pair is {threshold}")
|
||||
|
||||
if current_distance < threshold:
|
||||
logger.info(
|
||||
f"This pair is same person because its distance {current_distance}"
|
||||
f" is less than threshold {threshold}"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"This pair is different persons because its distance {current_distance}"
|
||||
f" is greater than threshold {threshold}"
|
||||
)
|
||||
# ----------------------------------------------
|
||||
# expand vectors to be shown better in graph
|
||||
|
||||
@ -75,7 +89,7 @@ im = plt.imshow(img2_graph, interpolation="nearest", cmap=plt.cm.ocean)
|
||||
plt.colorbar()
|
||||
|
||||
ax5 = fig.add_subplot(3, 2, 5)
|
||||
plt.text(0.35, 0, f"Distance: {distance}")
|
||||
plt.text(0.35, 0, f"Distance: {current_distance}")
|
||||
plt.axis("off")
|
||||
|
||||
ax6 = fig.add_subplot(3, 2, 6)
|
||||
|
@ -1,12 +1,14 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
from deepface import DeepFace
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger("tests/test_extract_faces.py")
|
||||
|
||||
detectors = ["opencv", "mtcnn"]
|
||||
|
||||
|
||||
def test_different_detectors():
|
||||
detectors = ["opencv", "mtcnn"]
|
||||
|
||||
for detector in detectors:
|
||||
img_objs = DeepFace.extract_faces(img_path="dataset/img11.jpg", detector_backend=detector)
|
||||
for img_obj in img_objs:
|
||||
@ -22,3 +24,21 @@ def test_different_detectors():
|
||||
img = img_obj["face"]
|
||||
assert img.shape[0] > 0 and img.shape[1] > 0
|
||||
logger.info(f"✅ extract_faces for {detector} backend test is done")
|
||||
|
||||
|
||||
def test_backends_for_enforced_detection_with_non_facial_inputs():
|
||||
black_img = np.zeros([224, 224, 3])
|
||||
for detector in detectors:
|
||||
with pytest.raises(ValueError):
|
||||
_ = DeepFace.extract_faces(img_path=black_img, detector_backend=detector)
|
||||
logger.info("✅ extract_faces for enforced detection and non-facial image test is done")
|
||||
|
||||
|
||||
def test_backends_for_not_enforced_detection_with_non_facial_inputs():
|
||||
black_img = np.zeros([224, 224, 3])
|
||||
for detector in detectors:
|
||||
objs = DeepFace.extract_faces(
|
||||
img_path=black_img, detector_backend=detector, enforce_detection=False
|
||||
)
|
||||
assert objs[0]["face"].shape == (224, 224, 3)
|
||||
logger.info("✅ extract_faces for not enforced detection and non-facial image test is done")
|
||||
|
@ -6,7 +6,7 @@ from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger("tests/test_find.py")
|
||||
|
||||
threshold = distance.findThreshold(model_name="VGG-Face", distance_metric="cosine")
|
||||
threshold = distance.find_threshold(model_name="VGG-Face", distance_metric="cosine")
|
||||
|
||||
|
||||
def test_find_with_exact_path():
|
||||
|
Loading…
x
Reference in New Issue
Block a user