mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 03:25:21 +00:00
Resolve warnings of Logger library
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
This commit is contained in:
parent
774012ab88
commit
66844b1687
@ -635,7 +635,7 @@ def detectFace(
|
||||
Returns:
|
||||
img (np.ndarray): detected (and aligned) facial area image as numpy array
|
||||
"""
|
||||
logger.warn("Function detectFace is deprecated. Use extract_faces instead.")
|
||||
logger.warning("Function detectFace is deprecated. Use extract_faces instead.")
|
||||
face_objs = extract_faces(
|
||||
img_path=img_path,
|
||||
detector_backend=detector_backend,
|
||||
|
@ -128,7 +128,7 @@ def extract_faces(
|
||||
continue
|
||||
|
||||
if grayscale is True:
|
||||
logger.warn("Parameter grayscale is deprecated. Use color_face instead.")
|
||||
logger.warning("Parameter grayscale is deprecated. Use color_face instead.")
|
||||
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
||||
else:
|
||||
if color_face == "rgb":
|
||||
@ -226,7 +226,7 @@ def detect_faces(
|
||||
|
||||
# validate expand percentage score
|
||||
if expand_percentage < 0:
|
||||
logger.warn(
|
||||
logger.warning(
|
||||
f"Expand percentage cannot be negative but you set it to {expand_percentage}."
|
||||
"Overwritten it to 0."
|
||||
)
|
||||
@ -304,7 +304,7 @@ def extract_face(
|
||||
if align is True: # and left_eye is not None and right_eye is not None:
|
||||
# we were aligning the original image before, but this comes with an extra cost
|
||||
# instead we now focus on the facial area with a margin
|
||||
# and align it instead of original image to decrese the cost
|
||||
# and align it instead of original image to decrease the cost
|
||||
sub_img, relative_x, relative_y = extract_sub_image(img=img, facial_area=(x, y, w, h))
|
||||
|
||||
aligned_sub_img, angle = align_img_wrt_eyes(
|
||||
@ -419,7 +419,7 @@ def align_img_wrt_eyes(
|
||||
right_eye: Optional[Union[list, tuple]],
|
||||
) -> Tuple[np.ndarray, float]:
|
||||
"""
|
||||
Align a given image horizantally with respect to their left and right eye locations
|
||||
Align a given image horizontally with respect to their left and right eye locations
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image with detected face
|
||||
left_eye (list or tuple): coordinates of left eye with respect to the person itself
|
||||
@ -453,7 +453,7 @@ def project_facial_area(
|
||||
"""
|
||||
Update pre-calculated facial area coordinates after image itself
|
||||
rotated with respect to the eyes.
|
||||
Inspried from the work of @UmutDeniz26 - github.com/serengil/retinaface/pull/80
|
||||
Inspired from the work of @UmutDeniz26 - github.com/serengil/retinaface/pull/80
|
||||
|
||||
Args:
|
||||
facial_area (tuple of int): Representing the (x1, y1, x2, y2) of the facial area.
|
||||
@ -467,7 +467,7 @@ def project_facial_area(
|
||||
(x1, y1, x2, y2) or (x1, y1, x1+w1, y1+h1) of the rotated facial area.
|
||||
"""
|
||||
|
||||
# Normalize the witdh of the angle so we don't have to
|
||||
# Normalize the width of the angle so we don't have to
|
||||
# worry about rotations greater than 360 degrees.
|
||||
# We workaround the quirky behavior of the modulo operator
|
||||
# for negative angle values.
|
||||
|
@ -142,7 +142,7 @@ def analysis(
|
||||
if freeze:
|
||||
frame += 1
|
||||
|
||||
# restore raw image to get rid of countdown informtion
|
||||
# restore raw image to get rid of countdown information
|
||||
img = raw_img.copy()
|
||||
|
||||
# add analyze results into img
|
||||
@ -197,7 +197,7 @@ def analysis(
|
||||
tic = time.time()
|
||||
logger.info("Freeze released")
|
||||
|
||||
# count how many seconds required to relased freezed image in the left up area
|
||||
# count how many seconds required to released freezed image in the left up area
|
||||
freezed_img = countdown_to_release(img=freezed_img, tic=tic, time_threshold=time_threshold)
|
||||
display_img = img if freezed_img is None else freezed_img
|
||||
|
||||
@ -267,7 +267,7 @@ def search_identity(
|
||||
)
|
||||
except ValueError as err:
|
||||
if f"No item found in {db_path}" in str(err):
|
||||
logger.warn(
|
||||
logger.warning(
|
||||
f"No item is found in {db_path}."
|
||||
"So, no facial recognition analysis will be performed."
|
||||
)
|
||||
@ -371,8 +371,8 @@ def countdown_to_freeze(
|
||||
Args:
|
||||
img (np.ndarray): image itself
|
||||
faces_coordinates (list): list of face coordinates as tuple with x, y, w and h
|
||||
frame_threshold (int): how many sequantial frames required with face(s) to freeze
|
||||
num_frames_with_faces (int): how many sequantial frames do we have with face(s)
|
||||
frame_threshold (int): how many sequential frames required with face(s) to freeze
|
||||
num_frames_with_faces (int): how many sequential frames do we have with face(s)
|
||||
Returns:
|
||||
img (np.ndarray): image with counter values
|
||||
"""
|
||||
@ -503,7 +503,7 @@ def perform_facial_recognition(
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
|
||||
Returns:
|
||||
img (np.ndarray): image with identified face informations
|
||||
img (np.ndarray): image with identified face information
|
||||
"""
|
||||
for idx, (x, y, w, h, is_real, antispoof_score) in enumerate(faces_coordinates):
|
||||
detected_face = detected_faces[idx]
|
||||
@ -598,7 +598,7 @@ def overlay_identified_face(
|
||||
w (int): w coordinate of the face on the given image
|
||||
h (int): h coordinate of the face on the given image
|
||||
Returns:
|
||||
img (np.ndarray): image with overlayed identity
|
||||
img (np.ndarray): image with overlaid identity
|
||||
"""
|
||||
try:
|
||||
if y - IDENTIFIED_IMG_SIZE > 0 and x + w + IDENTIFIED_IMG_SIZE < img.shape[1]:
|
||||
@ -767,7 +767,7 @@ def overlay_identified_face(
|
||||
x + w + IDENTIFIED_IMG_SIZE < img.shape[1]
|
||||
and y + h + IDENTIFIED_IMG_SIZE < img.shape[0]
|
||||
):
|
||||
# bottom righ
|
||||
# bottom right
|
||||
img[
|
||||
y + h : y + h + IDENTIFIED_IMG_SIZE,
|
||||
x + w : x + w + IDENTIFIED_IMG_SIZE,
|
||||
|
@ -149,7 +149,7 @@ def verify(
|
||||
)
|
||||
|
||||
if silent is False:
|
||||
logger.warn(
|
||||
logger.warning(
|
||||
f"You passed {index}-th image as pre-calculated embeddings."
|
||||
"Please ensure that embeddings have been calculated"
|
||||
f" for the {model_name} model."
|
||||
|
@ -442,7 +442,7 @@ def is_form_data_file_testable() -> bool:
|
||||
threshold_version = version.parse("2.0.2")
|
||||
is_testable = flask_version <= threshold_version and werkzeus_version <= threshold_version
|
||||
if is_testable is False:
|
||||
logger.warn(
|
||||
logger.warning(
|
||||
"sending file in form data is not testable because of flask, werkzeus versions."
|
||||
f"Expected <= {threshold_version}, but {flask_version=} and {werkzeus_version}."
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user