REVERT demography.py

This commit is contained in:
h-alice 2025-01-16 17:17:25 +08:00
parent 7e719dfdeb
commit 6a7bbdb926
No known key found for this signature in database
GPG Key ID: 5708F34144A70909

View File

@ -1,5 +1,5 @@
# built-in dependencies
from typing import Any, Dict, List, Union, Optional
from typing import Any, Dict, List, Union
# 3rd party dependencies
import numpy as np
@ -9,6 +9,7 @@ from tqdm import tqdm
from deepface.modules import modeling, detection, preprocessing
from deepface.models.demography import Gender, Race, Emotion
def analyze(
img_path: Union[str, np.ndarray],
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
@ -116,6 +117,8 @@ def analyze(
f"Invalid action passed ({repr(action)})). "
"Valid actions are `emotion`, `age`, `gender`, `race`."
)
# ---------------------------------
resp_objects = []
img_objs = detection.extract_faces(
img_path=img_path,
@ -127,105 +130,84 @@ def analyze(
anti_spoofing=anti_spoofing,
)
if anti_spoofing and any(img_obj.get("is_real", True) is False for img_obj in img_objs):
raise ValueError("Spoof detected in the given image.")
for img_obj in img_objs:
if anti_spoofing is True and img_obj.get("is_real", True) is False:
raise ValueError("Spoof detected in the given image.")
def preprocess_face(img_obj: Dict[str, Any]) -> Optional[np.ndarray]:
"""
Preprocess the face image for analysis.
"""
img_content = img_obj["face"]
img_region = img_obj["facial_area"]
img_confidence = img_obj["confidence"]
if img_content.shape[0] == 0 or img_content.shape[1] == 0:
return None
img_content = img_content[:, :, ::-1] # BGR to RGB
return preprocessing.resize_image(img=img_content, target_size=(224, 224))
continue
# Filter out empty faces
face_data = [
(
preprocess_face(img_obj),
img_obj["facial_area"],
img_obj["confidence"]
# rgb to bgr
img_content = img_content[:, :, ::-1]
# resize input image
img_content = preprocessing.resize_image(img=img_content, target_size=(224, 224))
obj = {}
# facial attribute analysis
pbar = tqdm(
range(0, len(actions)),
desc="Finding actions",
disable=silent if len(actions) > 1 else True,
)
for img_obj in img_objs if img_obj["face"].size > 0
]
for index in pbar:
action = actions[index]
pbar.set_description(f"Action: {action}")
if not face_data:
return []
if action == "emotion":
emotion_predictions = modeling.build_model(
task="facial_attribute", model_name="Emotion"
).predict(img_content)
sum_of_predictions = emotion_predictions.sum()
# Unpack the face data
valid_faces, face_regions, face_confidences = zip(*face_data)
faces_array = np.array(valid_faces)
# Initialize the results list with face regions and confidence scores
results = [{"region": region, "face_confidence": conf}
for region, conf in zip(face_regions, face_confidences)]
# Iterate over the actions and perform analysis
pbar = tqdm(
actions,
desc="Finding actions",
disable=silent if len(actions) > 1 else True,
)
for action in pbar:
pbar.set_description(f"Action: {action}")
model = modeling.build_model(task="facial_attribute", model_name=action.capitalize())
predictions = model.predict(faces_array)
# If the model returns a single prediction, reshape it to match the number of faces.
# Determine the correct shape of predictions by using number of faces and predictions shape.
# Example: For 1 face with Emotion model, predictions will be reshaped to (1, 7).
if faces_array.shape[0] == 1 and len(predictions.shape) == 1:
# For models like `Emotion`, which return a single prediction for a single face
predictions = predictions.reshape(1, -1)
# Update the results with the predictions
# ----------------------------------------
# For emotion, calculate the percentage of each emotion and find the dominant emotion
if action == "emotion":
emotion_results = [
{
"emotion": {
label: 100 * pred[i] / pred.sum()
for i, label in enumerate(Emotion.labels)
},
"dominant_emotion": Emotion.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, emotion_result in zip(results, emotion_results):
result.update(emotion_result)
# ----------------------------------------
# For age, find the dominant age category (0-100)
elif action == "age":
age_results = [{"age": int(np.argmax(pred) if len(pred.shape) > 0 else pred)}
for pred in predictions]
for result, age_result in zip(results, age_results):
result.update(age_result)
# ----------------------------------------
# For gender, calculate the percentage of each gender and find the dominant gender
elif action == "gender":
gender_results = [
{
"gender": {
label: 100 * pred[i]
for i, label in enumerate(Gender.labels)
},
"dominant_gender": Gender.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, gender_result in zip(results, gender_results):
result.update(gender_result)
# ----------------------------------------
# For race, calculate the percentage of each race and find the dominant race
elif action == "race":
race_results = [
{
"race": {
label: 100 * pred[i] / pred.sum()
for i, label in enumerate(Race.labels)
},
"dominant_race": Race.labels[np.argmax(pred)]
}
for pred in predictions
]
for result, race_result in zip(results, race_results):
result.update(race_result)
return results
obj["emotion"] = {}
for i, emotion_label in enumerate(Emotion.labels):
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
obj["emotion"][emotion_label] = emotion_prediction
obj["dominant_emotion"] = Emotion.labels[np.argmax(emotion_predictions)]
elif action == "age":
apparent_age = modeling.build_model(
task="facial_attribute", model_name="Age"
).predict(img_content)
# int cast is for exception - object of type 'float32' is not JSON serializable
print(apparent_age.shape)
obj["age"] = int(apparent_age)
elif action == "gender":
gender_predictions = modeling.build_model(
task="facial_attribute", model_name="Gender"
).predict(img_content)
obj["gender"] = {}
for i, gender_label in enumerate(Gender.labels):
gender_prediction = 100 * gender_predictions[i]
obj["gender"][gender_label] = gender_prediction
obj["dominant_gender"] = Gender.labels[np.argmax(gender_predictions)]
elif action == "race":
race_predictions = modeling.build_model(
task="facial_attribute", model_name="Race"
).predict(img_content)
sum_of_predictions = race_predictions.sum()
obj["race"] = {}
for i, race_label in enumerate(Race.labels):
race_prediction = 100 * race_predictions[i] / sum_of_predictions
obj["race"][race_label] = race_prediction
obj["dominant_race"] = Race.labels[np.argmax(race_predictions)]
# -----------------------------
# mention facial areas
obj["region"] = img_region
# include image confidence
obj["face_confidence"] = img_confidence
resp_objects.append(obj)
return resp_objects