model building once for api

This commit is contained in:
Şefik Serangil 2020-04-11 15:37:47 +03:00
parent fbbc931541
commit 6bb308a7e1
5 changed files with 194 additions and 156 deletions

View File

@ -1,121 +0,0 @@
from flask import Flask, jsonify, request, make_response
import uuid
import json
import time
from deepface import DeepFace
#------------------------------
app = Flask(__name__)
#------------------------------
#Service API Interface
@app.route('/')
def index():
return '<h1>Hello, world!</h1>'
@app.route('/analyze', methods=['POST'])
def analyze():
req = request.get_json()
trx_id = uuid.uuid4()
#---------------------------
tic = time.time()
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instances.append(item)
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Analyzing ", len(instances)," instances")
#---------------------------
actions= ['emotion', 'age', 'gender', 'race']
if "actions" in list(req.keys()):
actions = req["actions"]
#---------------------------
resp_obj = DeepFace.analyze(instances, actions=actions)
#---------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj
@app.route('/verify', methods=['POST'])
def verify():
req = request.get_json()
trx_id = uuid.uuid4()
tic = time.time()
#-------------------------
model_name = "VGG-Face"; distance_metric = "cosine"
if "model_name" in list(req.keys()):
model_name = req["model_name"]
if "distance_metric" in list(req.keys()):
distance_metric = req["distance_metric"]
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instance = []
img1 = item["img1"]; img2 = item["img2"]
validate_img1 = False
if len(img1) > 11 and img1[0:11] == "data:image/":
validate_img1 = True
validate_img2 = False
if len(img2) > 11 and img2[0:11] == "data:image/":
validate_img2 = True
if validate_img1 != True or validate_img2 != True:
return jsonify({'success': False, 'error': 'you must pass both img1 and img2 as base64 encoded string'}), 205
instance.append(img1); instance.append(img2)
instances.append(instance)
#--------------------------
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Input request of ", trx_id, " has ",len(instances)," pairs to verify")
#--------------------------
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric)
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
#--------------------------
return resp_obj, 200
if __name__ == '__main__':
app.run()

View File

@ -9,6 +9,8 @@ from tqdm import tqdm
import json
import cv2
from keras import backend as K
import keras
import tensorflow as tf
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
#from extendedmodels import Age, Gender, Race, Emotion
@ -18,15 +20,11 @@ from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
from deepface.extendedmodels import Age, Gender, Race, Emotion
from deepface.commons import functions, realtime, distance as dst
#TO-DO: pass built model optionally as input. I will get complex models up in rest api once and call these functions directly
def verify(img1_path, img2_path=''
, model_name ='VGG-Face', distance_metric = 'cosine', plot = False):
, model_name ='VGG-Face', distance_metric = 'cosine', model = None):
tic = time.time()
K.clear_session()
if type(img1_path) == list:
bulkProcess = True
img_list = img1_path.copy()
@ -36,28 +34,31 @@ def verify(img1_path, img2_path=''
#------------------------------
if model == None:
if model_name == 'VGG-Face':
print("Using VGG-Face model backend and", distance_metric,"distance.")
model = VGGFace.loadModel()
input_shape = (224, 224)
elif model_name == 'OpenFace':
print("Using OpenFace model backend", distance_metric,"distance.")
model = OpenFace.loadModel()
input_shape = (96, 96)
elif model_name == 'Facenet':
print("Using Facenet model backend", distance_metric,"distance.")
model = Facenet.loadModel()
input_shape = (160, 160)
elif model_name == 'DeepFace':
print("Using FB DeepFace model backend", distance_metric,"distance.")
model = FbDeepFace.loadModel()
input_shape = (152, 152)
else:
raise ValueError("Invalid model_name passed - ", model_name)
else: #model != None
print("Already built model is passed")
#------------------------------
#face recognition models have different size of inputs
input_shape = model.layers[0].input_shape[1:3]
#------------------------------
@ -133,8 +134,6 @@ def verify(img1_path, img2_path=''
#print("identification lasts ",toc-tic," seconds")
if bulkProcess == True:
K.clear_session()
resp_obj = "{"
for i in range(0, len(resp_objects)):
@ -151,8 +150,6 @@ def verify(img1_path, img2_path=''
def analyze(img_path, actions= []):
K.clear_session()
if type(img_path) == list:
img_paths = img_path.copy()
bulkProcess = True
@ -275,12 +272,9 @@ def analyze(img_path, actions= []):
if bulkProcess == True:
resp_objects.append(resp_obj)
else:
K.clear_session()
return resp_obj
if bulkProcess == True:
K.clear_session()
resp_obj = "{"
for i in range(0, len(resp_objects)):

165
deepface/app.py Normal file
View File

@ -0,0 +1,165 @@
from flask import Flask, jsonify, request, make_response
import uuid
import json
import time
import tensorflow as tf
from deepface import DeepFace
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
#import DeepFace
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
#------------------------------
app = Flask(__name__)
tic = time.time()
vggface_model = VGGFace.loadModel()
print("VGG-Face model is built.")
openface_model = OpenFace.loadModel()
print("OpenFace model is built")
facenet_model = Facenet.loadModel()
print("FaceNet model is built")
deepface_model = FbDeepFace.loadModel()
print("DeepFace model is built")
toc = time.time()
print("Face recognition models are built in ", toc-tic," seconds")
graph = tf.get_default_graph()
#------------------------------
#Service API Interface
@app.route('/')
def index():
return '<h1>Hello, world!</h1>'
@app.route('/analyze', methods=['POST'])
def analyze():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
#---------------------------
resp_obj = jsonify({'success': False})
with graph.as_default():
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instances.append(item)
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Analyzing ", len(instances)," instances")
#---------------------------
actions= ['emotion', 'age', 'gender', 'race']
if "actions" in list(req.keys()):
actions = req["actions"]
#---------------------------
resp_obj = DeepFace.analyze(instances, actions=actions)
#---------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj
@app.route('/verify', methods=['POST'])
def verify():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
resp_obj = jsonify({'success': False})
with graph.as_default():
model_name = "VGG-Face"; distance_metric = "cosine"
if "model_name" in list(req.keys()):
model_name = req["model_name"]
if "distance_metric" in list(req.keys()):
distance_metric = req["distance_metric"]
#----------------------
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instance = []
img1 = item["img1"]; img2 = item["img2"]
validate_img1 = False
if len(img1) > 11 and img1[0:11] == "data:image/":
validate_img1 = True
validate_img2 = False
if len(img2) > 11 and img2[0:11] == "data:image/":
validate_img2 = True
if validate_img1 != True or validate_img2 != True:
return jsonify({'success': False, 'error': 'you must pass both img1 and img2 as base64 encoded string'}), 205
instance.append(img1); instance.append(img2)
instances.append(instance)
#--------------------------
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Input request of ", trx_id, " has ",len(instances)," pairs to verify")
#--------------------------
if model_name == "VGG-Face":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = vggface_model)
elif model_name == "Facenet":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = facenet_model)
elif model_name == "OpenFace":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = openface_model)
elif model_name == "DeepFace":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = deepface_model)
else:
return jsonify({'success': False, 'error': 'You must pass a valid model name. Available models are VGG-Face, Facenet, OpenFace, DeepFace but you passed %s' % (model_name)}), 205
#--------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
if __name__ == '__main__':
app.run()

View File

@ -32,7 +32,7 @@ def loadModel():
x = Conv2D(192, (3, 3), name='conv3')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x)
x = Activation('relu')(x)
Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_2')(x)
x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_2')(x) #x is equal added
x = ZeroPadding2D(padding=(1, 1))(x)
x = MaxPooling2D(pool_size=3, strides=2)(x)