Added max_faces

This commit is contained in:
Josh 2024-08-22 20:13:40 +01:00
parent 0022131bf6
commit 6bdf83b86f
2 changed files with 20 additions and 3 deletions

View File

@ -1,5 +1,5 @@
# built-in dependencies # built-in dependencies
from typing import Any, Dict, List, Tuple, Union from typing import Any, Dict, List, Tuple, Union, Optional
# 3rd part dependencies # 3rd part dependencies
import numpy as np import numpy as np
@ -10,7 +10,9 @@ from PIL import Image
from deepface.modules import modeling from deepface.modules import modeling
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
from deepface.commons import image_utils from deepface.commons import image_utils
from deepface.commons.logger import Logger from deepface.commons.logger import Logger
import time
logger = Logger() logger = Logger()
@ -27,6 +29,7 @@ def extract_faces(
color_face: str = "rgb", color_face: str = "rgb",
normalize_face: bool = True, normalize_face: bool = True,
anti_spoofing: bool = False, anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]: ) -> List[Dict[str, Any]]:
""" """
Extract faces from a given image Extract faces from a given image
@ -97,6 +100,7 @@ def extract_faces(
img=img, img=img,
align=align, align=align,
expand_percentage=expand_percentage, expand_percentage=expand_percentage,
max_faces=max_faces,
) )
# in case of no face found # in case of no face found
@ -176,7 +180,7 @@ def extract_faces(
def detect_faces( def detect_faces(
detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0 detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0, max_faces: Optional[int] = None
) -> List[DetectedFace]: ) -> List[DetectedFace]:
""" """
Detect face(s) from a given image Detect face(s) from a given image
@ -202,7 +206,7 @@ def detect_faces(
- confidence (float): The confidence score associated with the detected face. - confidence (float): The confidence score associated with the detected face.
""" """
height, width, _ = img.shape height, width, _ = img.shape
face_detector: Detector = modeling.build_model( face_detector: Detector = modeling.build_model(
task="face_detector", model_name=detector_backend task="face_detector", model_name=detector_backend
) )
@ -233,6 +237,17 @@ def detect_faces(
# find facial areas of given image # find facial areas of given image
facial_areas = face_detector.detect_faces(img) facial_areas = face_detector.detect_faces(img)
if max_faces is not None and max_faces < len(facial_areas):
# sort as largest facial areas come first
facial_areas = sorted(
facial_areas,
key=lambda facial_area: facial_area.w * facial_area.h,
reverse=True,
)
# discard rest of the items
facial_areas = facial_areas[0:max_faces]
start_time = time.time()
results = [] results = []
for facial_area in facial_areas: for facial_area in facial_areas:
x = facial_area.x x = facial_area.x
@ -285,6 +300,7 @@ def detect_faces(
confidence=confidence, confidence=confidence,
) )
results.append(result) results.append(result)
return results return results

View File

@ -81,6 +81,7 @@ def represent(
align=align, align=align,
expand_percentage=expand_percentage, expand_percentage=expand_percentage,
anti_spoofing=anti_spoofing, anti_spoofing=anti_spoofing,
max_faces=max_faces,
) )
else: # skip else: # skip
# Try load. If load error, will raise exception internal # Try load. If load error, will raise exception internal