mirror of
https://github.com/serengil/deepface.git
synced 2025-07-29 14:21:39 +00:00
reformatted the functions.py file
This commit is contained in:
parent
f3b0b76976
commit
6f00d5956c
@ -1,6 +1,5 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import cv2
|
||||
import base64
|
||||
from pathlib import Path
|
||||
@ -8,243 +7,254 @@ from pathlib import Path
|
||||
from deepface.detectors import FaceDetector
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
tf_version = tf.__version__
|
||||
tf_major_version = int(tf_version.split(".")[0])
|
||||
tf_minor_version = int(tf_version.split(".")[1])
|
||||
|
||||
if tf_major_version == 1:
|
||||
import keras
|
||||
from keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from keras.applications.imagenet_utils import preprocess_input
|
||||
from keras.preprocessing import image
|
||||
import keras
|
||||
from keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from keras.applications.imagenet_utils import preprocess_input
|
||||
from keras.preprocessing import image
|
||||
elif tf_major_version == 2:
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from tensorflow.keras.applications.imagenet_utils import preprocess_input
|
||||
from tensorflow.keras.preprocessing import image
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.preprocessing.image import load_img, save_img, img_to_array
|
||||
from tensorflow.keras.applications.imagenet_utils import preprocess_input
|
||||
from tensorflow.keras.preprocessing import image
|
||||
|
||||
#--------------------------------------------------
|
||||
|
||||
def initialize_input(img1_path, img2_path = None):
|
||||
# --------------------------------------------------
|
||||
|
||||
if type(img1_path) == list:
|
||||
bulkProcess = True
|
||||
img_list = img1_path.copy()
|
||||
else:
|
||||
bulkProcess = False
|
||||
def initialize_input(img1_path, img2_path=None):
|
||||
if type(img1_path) == list:
|
||||
bulkProcess = True
|
||||
img_list = img1_path.copy()
|
||||
else:
|
||||
bulkProcess = False
|
||||
|
||||
if (
|
||||
(type(img2_path) == str and img2_path != None) #exact image path, base64 image
|
||||
or (isinstance(img2_path, np.ndarray) and img2_path.any()) #numpy array
|
||||
):
|
||||
img_list = [[img1_path, img2_path]]
|
||||
else: #analyze function passes just img1_path
|
||||
img_list = [img1_path]
|
||||
if (
|
||||
(type(img2_path) == str and img2_path != None) # exact image path, base64 image
|
||||
or (isinstance(img2_path, np.ndarray) and img2_path.any()) # numpy array
|
||||
):
|
||||
img_list = [[img1_path, img2_path]]
|
||||
else: # analyze function passes just img1_path
|
||||
img_list = [img1_path]
|
||||
|
||||
return img_list, bulkProcess
|
||||
|
||||
return img_list, bulkProcess
|
||||
|
||||
def initialize_folder():
|
||||
home = get_deepface_home()
|
||||
home = get_deepface_home()
|
||||
|
||||
if not os.path.exists(home+"/.deepface"):
|
||||
os.makedirs(home+"/.deepface")
|
||||
print("Directory ", home, "/.deepface created")
|
||||
if not os.path.exists(home + "/.deepface"):
|
||||
os.makedirs(home + "/.deepface")
|
||||
print("Directory ", home, "/.deepface created")
|
||||
|
||||
if not os.path.exists(home + "/.deepface/weights"):
|
||||
os.makedirs(home + "/.deepface/weights")
|
||||
print("Directory ", home, "/.deepface/weights created")
|
||||
|
||||
if not os.path.exists(home+"/.deepface/weights"):
|
||||
os.makedirs(home+"/.deepface/weights")
|
||||
print("Directory ", home, "/.deepface/weights created")
|
||||
|
||||
def get_deepface_home():
|
||||
return str(os.getenv('DEEPFACE_HOME', default=Path.home()))
|
||||
return str(os.getenv('DEEPFACE_HOME', default=Path.home()))
|
||||
|
||||
|
||||
def loadBase64Img(uri):
|
||||
encoded_data = uri.split(',')[1]
|
||||
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
|
||||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
return img
|
||||
encoded_data = uri.split(',')[1]
|
||||
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
|
||||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
return img
|
||||
|
||||
|
||||
def load_image(img):
|
||||
exact_image = False
|
||||
if type(img).__module__ == np.__name__:
|
||||
exact_image = True
|
||||
|
||||
exact_image = False
|
||||
if type(img).__module__ == np.__name__:
|
||||
exact_image = True
|
||||
base64_img = False
|
||||
if len(img) > 11 and img[0:11] == "data:image/":
|
||||
base64_img = True
|
||||
|
||||
base64_img = False
|
||||
if len(img) > 11 and img[0:11] == "data:image/":
|
||||
base64_img = True
|
||||
# ---------------------------
|
||||
|
||||
#---------------------------
|
||||
if base64_img == True:
|
||||
img = loadBase64Img(img)
|
||||
|
||||
if base64_img == True:
|
||||
img = loadBase64Img(img)
|
||||
elif exact_image != True: # image path passed as input
|
||||
if os.path.isfile(img) != True:
|
||||
raise ValueError("Confirm that ", img, " exists")
|
||||
|
||||
elif exact_image != True: #image path passed as input
|
||||
if os.path.isfile(img) != True:
|
||||
raise ValueError("Confirm that ",img," exists")
|
||||
img = cv2.imread(img)
|
||||
|
||||
img = cv2.imread(img)
|
||||
return img
|
||||
|
||||
return img
|
||||
|
||||
def detect_face(img, detector_backend = 'opencv', enforce_detection = True, align = True):
|
||||
detected_face, img_region = None, [0, 0, img.shape[0], img.shape[1]] # Assume by default that nothing is detected.
|
||||
def detect_face(img, detector_backend='opencv', enforce_detection=True, align=True):
|
||||
detected_face, img_region = None, [0, 0, img.shape[0], img.shape[1]] # Assume by default that nothing is detected.
|
||||
|
||||
# ----------------------------------------------
|
||||
# people would like to skip detection and alignment if they already have pre-processed images
|
||||
if detector_backend == 'skip':
|
||||
return img, img_region
|
||||
# ----------------------------------------------
|
||||
# people would like to skip detection and alignment if they already have pre-processed images
|
||||
if detector_backend == 'skip':
|
||||
return img, img_region
|
||||
|
||||
# ----------------------------------------------
|
||||
# Detector stored in a global variable in FaceDetector object.
|
||||
# this call should be completed very fast because it will return found in memory
|
||||
# it will not build face detector model in each call (consider for loops)
|
||||
face_detector = FaceDetector.build_model(detector_backend)
|
||||
# ----------------------------------------------
|
||||
# Detector stored in a global variable in FaceDetector object.
|
||||
# this call should be completed very fast because it will return found in memory
|
||||
# it will not build face detector model in each call (consider for loops)
|
||||
face_detector = FaceDetector.build_model(detector_backend)
|
||||
|
||||
try:
|
||||
faces = FaceDetector.detect_faces(face_detector, detector_backend, img, align)
|
||||
if len(faces) > 0:
|
||||
detected_face, img_region = faces[0]
|
||||
try:
|
||||
faces = FaceDetector.detect_faces(face_detector, detector_backend, img, align)
|
||||
if len(faces) > 0:
|
||||
detected_face, img_region = faces[0]
|
||||
|
||||
except: # if detected face shape is (0, 0) and alignment cannot be performed, this block will be run
|
||||
pass
|
||||
except: # if detected face shape is (0, 0) and alignment cannot be performed, this block will be run
|
||||
pass
|
||||
|
||||
if isinstance(detected_face, np.ndarray):
|
||||
return detected_face, img_region
|
||||
else:
|
||||
if detected_face is None:
|
||||
if not enforce_detection:
|
||||
return img, img_region
|
||||
else:
|
||||
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
|
||||
if isinstance(detected_face, np.ndarray):
|
||||
return detected_face, img_region
|
||||
else:
|
||||
if detected_face is None:
|
||||
if not enforce_detection:
|
||||
return img, img_region
|
||||
else:
|
||||
raise ValueError(
|
||||
"Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
|
||||
|
||||
def normalize_input(img, normalization = 'base'):
|
||||
|
||||
#issue 131 declares that some normalization techniques improves the accuracy
|
||||
def normalize_input(img, normalization='base'):
|
||||
# issue 131 declares that some normalization techniques improves the accuracy
|
||||
|
||||
if normalization == 'base':
|
||||
return img
|
||||
else:
|
||||
#@trevorgribble and @davedgd contributed this feature
|
||||
if normalization == 'base':
|
||||
return img
|
||||
else:
|
||||
# @trevorgribble and @davedgd contributed this feature
|
||||
|
||||
img *= 255 #restore input in scale of [0, 255] because it was normalized in scale of [0, 1] in preprocess_face
|
||||
img *= 255 # restore input in scale of [0, 255] because it was normalized in scale of [0, 1] in preprocess_face
|
||||
|
||||
if normalization == 'raw':
|
||||
pass #return just restored pixels
|
||||
if normalization == 'raw':
|
||||
pass # return just restored pixels
|
||||
|
||||
elif normalization == 'Facenet':
|
||||
mean, std = img.mean(), img.std()
|
||||
img = (img - mean) / std
|
||||
elif normalization == 'Facenet':
|
||||
mean, std = img.mean(), img.std()
|
||||
img = (img - mean) / std
|
||||
|
||||
elif(normalization=="Facenet2018"):
|
||||
# simply / 127.5 - 1 (similar to facenet 2018 model preprocessing step as @iamrishab posted)
|
||||
img /= 127.5
|
||||
img -= 1
|
||||
elif (normalization == "Facenet2018"):
|
||||
# simply / 127.5 - 1 (similar to facenet 2018 model preprocessing step as @iamrishab posted)
|
||||
img /= 127.5
|
||||
img -= 1
|
||||
|
||||
elif normalization == 'VGGFace':
|
||||
# mean subtraction based on VGGFace1 training data
|
||||
img[..., 0] -= 93.5940
|
||||
img[..., 1] -= 104.7624
|
||||
img[..., 2] -= 129.1863
|
||||
elif normalization == 'VGGFace':
|
||||
# mean subtraction based on VGGFace1 training data
|
||||
img[..., 0] -= 93.5940
|
||||
img[..., 1] -= 104.7624
|
||||
img[..., 2] -= 129.1863
|
||||
|
||||
elif(normalization == 'VGGFace2'):
|
||||
# mean subtraction based on VGGFace2 training data
|
||||
img[..., 0] -= 91.4953
|
||||
img[..., 1] -= 103.8827
|
||||
img[..., 2] -= 131.0912
|
||||
elif (normalization == 'VGGFace2'):
|
||||
# mean subtraction based on VGGFace2 training data
|
||||
img[..., 0] -= 91.4953
|
||||
img[..., 1] -= 103.8827
|
||||
img[..., 2] -= 131.0912
|
||||
|
||||
elif(normalization == 'ArcFace'):
|
||||
#Reference study: The faces are cropped and resized to 112×112,
|
||||
#and each pixel (ranged between [0, 255]) in RGB images is normalised
|
||||
#by subtracting 127.5 then divided by 128.
|
||||
img -= 127.5
|
||||
img /= 128
|
||||
elif (normalization == 'ArcFace'):
|
||||
# Reference study: The faces are cropped and resized to 112×112,
|
||||
# and each pixel (ranged between [0, 255]) in RGB images is normalised
|
||||
# by subtracting 127.5 then divided by 128.
|
||||
img -= 127.5
|
||||
img /= 128
|
||||
|
||||
#-----------------------------
|
||||
# -----------------------------
|
||||
|
||||
return img
|
||||
return img
|
||||
|
||||
def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_detection = True, detector_backend = 'opencv', align = True):
|
||||
|
||||
#img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img = load_image(img)
|
||||
base_img = img.copy()
|
||||
def preprocess_face(img, target_size=(224, 224), grayscale=False, enforce_detection=True, detector_backend='opencv',
|
||||
align=True):
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img = load_image(img)
|
||||
base_img = img.copy()
|
||||
|
||||
img, region = detect_face(img = img, detector_backend = detector_backend, enforce_detection = enforce_detection, align = align)
|
||||
img, region = detect_face(img=img, detector_backend=detector_backend, enforce_detection=enforce_detection,
|
||||
align=align)
|
||||
|
||||
#--------------------------
|
||||
# --------------------------
|
||||
|
||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||
if enforce_detection == True:
|
||||
raise ValueError("Detected face shape is ", img.shape,". Consider to set enforce_detection argument to False.")
|
||||
else: #restore base image
|
||||
img = base_img.copy()
|
||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||
if enforce_detection == True:
|
||||
raise ValueError("Detected face shape is ", img.shape,
|
||||
". Consider to set enforce_detection argument to False.")
|
||||
else: # restore base image
|
||||
img = base_img.copy()
|
||||
|
||||
#--------------------------
|
||||
# --------------------------
|
||||
|
||||
#post-processing
|
||||
if grayscale == True:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
# post-processing
|
||||
if grayscale == True:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
#---------------------------------------------------
|
||||
#resize image to expected shape
|
||||
# ---------------------------------------------------
|
||||
# resize image to expected shape
|
||||
|
||||
# img = cv2.resize(img, target_size) #resize causes transformation on base image, adding black pixels to resize will not deform the base image
|
||||
# img = cv2.resize(img, target_size) #resize causes transformation on base image, adding black pixels to resize will not deform the base image
|
||||
|
||||
factor_0 = target_size[0] / img.shape[0]
|
||||
factor_1 = target_size[1] / img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
factor_0 = target_size[0] / img.shape[0]
|
||||
factor_1 = target_size[1] / img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
|
||||
dsize = (int(img.shape[1] * factor), int(img.shape[0] * factor))
|
||||
img = cv2.resize(img, dsize)
|
||||
dsize = (int(img.shape[1] * factor), int(img.shape[0] * factor))
|
||||
img = cv2.resize(img, dsize)
|
||||
|
||||
# Then pad the other side to the target size by adding black pixels
|
||||
diff_0 = target_size[0] - img.shape[0]
|
||||
diff_1 = target_size[1] - img.shape[1]
|
||||
if grayscale == False:
|
||||
# Put the base image in the middle of the padded image
|
||||
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2), (0, 0)), 'constant')
|
||||
else:
|
||||
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2)), 'constant')
|
||||
# Then pad the other side to the target size by adding black pixels
|
||||
diff_0 = target_size[0] - img.shape[0]
|
||||
diff_1 = target_size[1] - img.shape[1]
|
||||
if grayscale == False:
|
||||
# Put the base image in the middle of the padded image
|
||||
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2), (0, 0)),
|
||||
'constant')
|
||||
else:
|
||||
img = np.pad(img, ((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2)), 'constant')
|
||||
|
||||
#double check: if target image is not still the same size with target.
|
||||
if img.shape[0:2] != target_size:
|
||||
img = cv2.resize(img, target_size)
|
||||
# double check: if target image is not still the same size with target.
|
||||
if img.shape[0:2] != target_size:
|
||||
img = cv2.resize(img, target_size)
|
||||
|
||||
#---------------------------------------------------
|
||||
# ---------------------------------------------------
|
||||
|
||||
#normalizing the image pixels
|
||||
# normalizing the image pixels
|
||||
|
||||
img_pixels = image.img_to_array(img) #what this line doing? must?
|
||||
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
||||
img_pixels /= 255 #normalize input in [0, 1]
|
||||
img_pixels = image.img_to_array(img) # what this line doing? must?
|
||||
img_pixels = np.expand_dims(img_pixels, axis=0)
|
||||
img_pixels /= 255 # normalize input in [0, 1]
|
||||
|
||||
#---------------------------------------------------
|
||||
# ---------------------------------------------------
|
||||
|
||||
return img_pixels, region
|
||||
|
||||
return img_pixels, region
|
||||
|
||||
def find_input_shape(model):
|
||||
# face recognition models have different size of inputs
|
||||
# my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||
|
||||
#face recognition models have different size of inputs
|
||||
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
|
||||
input_shape = model.layers[0].input_shape
|
||||
|
||||
input_shape = model.layers[0].input_shape
|
||||
if type(input_shape) == list:
|
||||
input_shape = input_shape[0][1:3]
|
||||
else:
|
||||
input_shape = input_shape[1:3]
|
||||
|
||||
if type(input_shape) == list:
|
||||
input_shape = input_shape[0][1:3]
|
||||
else:
|
||||
input_shape = input_shape[1:3]
|
||||
# ----------------------
|
||||
# issue 289: it seems that tf 2.5 expects you to resize images with (x, y)
|
||||
# whereas its older versions expect (y, x)
|
||||
|
||||
#----------------------
|
||||
#issue 289: it seems that tf 2.5 expects you to resize images with (x, y)
|
||||
#whereas its older versions expect (y, x)
|
||||
if tf_major_version == 2 and tf_minor_version >= 5:
|
||||
x = input_shape[0];
|
||||
y = input_shape[1]
|
||||
input_shape = (y, x)
|
||||
|
||||
if tf_major_version == 2 and tf_minor_version >= 5:
|
||||
x = input_shape[0]; y = input_shape[1]
|
||||
input_shape = (y, x)
|
||||
# ----------------------
|
||||
|
||||
#----------------------
|
||||
if type(input_shape) == list: # issue 197: some people got array here instead of tuple
|
||||
input_shape = tuple(input_shape)
|
||||
|
||||
if type(input_shape) == list: #issue 197: some people got array here instead of tuple
|
||||
input_shape = tuple(input_shape)
|
||||
|
||||
return input_shape
|
||||
return input_shape
|
||||
|
Loading…
x
Reference in New Issue
Block a user