mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Sped up face alignment by using cv2 for rotation rather than PIL
This commit is contained in:
parent
d478f41c47
commit
70bce5ae63
@ -12,7 +12,6 @@ from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
|||||||
from deepface.commons import image_utils
|
from deepface.commons import image_utils
|
||||||
|
|
||||||
from deepface.commons.logger import Logger
|
from deepface.commons.logger import Logger
|
||||||
import time
|
|
||||||
|
|
||||||
logger = Logger()
|
logger = Logger()
|
||||||
|
|
||||||
@ -247,62 +246,62 @@ def detect_faces(
|
|||||||
# discard rest of the items
|
# discard rest of the items
|
||||||
facial_areas = facial_areas[0:max_faces]
|
facial_areas = facial_areas[0:max_faces]
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
results = []
|
results = []
|
||||||
|
|
||||||
for facial_area in facial_areas:
|
for facial_area in facial_areas:
|
||||||
x = facial_area.x
|
results.append(expand_and_align_face(facial_area=facial_area, img=img, align=align, expand_percentage=expand_percentage, width_border=width_border, height_border=height_border))
|
||||||
y = facial_area.y
|
|
||||||
w = facial_area.w
|
|
||||||
h = facial_area.h
|
|
||||||
left_eye = facial_area.left_eye
|
|
||||||
right_eye = facial_area.right_eye
|
|
||||||
confidence = facial_area.confidence
|
|
||||||
|
|
||||||
if expand_percentage > 0:
|
|
||||||
# Expand the facial region height and width by the provided percentage
|
|
||||||
# ensuring that the expanded region stays within img.shape limits
|
|
||||||
expanded_w = w + int(w * expand_percentage / 100)
|
|
||||||
expanded_h = h + int(h * expand_percentage / 100)
|
|
||||||
|
|
||||||
x = max(0, x - int((expanded_w - w) / 2))
|
|
||||||
y = max(0, y - int((expanded_h - h) / 2))
|
|
||||||
w = min(img.shape[1] - x, expanded_w)
|
|
||||||
h = min(img.shape[0] - y, expanded_h)
|
|
||||||
|
|
||||||
# extract detected face unaligned
|
|
||||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
|
||||||
|
|
||||||
# align original image, then find projection of detected face area after alignment
|
|
||||||
if align is True: # and left_eye is not None and right_eye is not None:
|
|
||||||
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
|
|
||||||
|
|
||||||
rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
|
|
||||||
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
|
|
||||||
)
|
|
||||||
detected_face = aligned_img[
|
|
||||||
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
|
|
||||||
]
|
|
||||||
|
|
||||||
# restore x, y, le and re before border added
|
|
||||||
x = x - width_border
|
|
||||||
y = y - height_border
|
|
||||||
# w and h will not change
|
|
||||||
if left_eye is not None:
|
|
||||||
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
|
|
||||||
if right_eye is not None:
|
|
||||||
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
|
|
||||||
|
|
||||||
result = DetectedFace(
|
|
||||||
img=detected_face,
|
|
||||||
facial_area=FacialAreaRegion(
|
|
||||||
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
|
|
||||||
),
|
|
||||||
confidence=confidence,
|
|
||||||
)
|
|
||||||
results.append(result)
|
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def expand_and_align_face(facial_area: FacialAreaRegion, img: np.ndarray, align: bool, expand_percentage: int, width_border: int, height_border: int) -> DetectedFace:
|
||||||
|
x = facial_area.x
|
||||||
|
y = facial_area.y
|
||||||
|
w = facial_area.w
|
||||||
|
h = facial_area.h
|
||||||
|
left_eye = facial_area.left_eye
|
||||||
|
right_eye = facial_area.right_eye
|
||||||
|
confidence = facial_area.confidence
|
||||||
|
|
||||||
|
if expand_percentage > 0:
|
||||||
|
# Expand the facial region height and width by the provided percentage
|
||||||
|
# ensuring that the expanded region stays within img.shape limits
|
||||||
|
expanded_w = w + int(w * expand_percentage / 100)
|
||||||
|
expanded_h = h + int(h * expand_percentage / 100)
|
||||||
|
|
||||||
|
x = max(0, x - int((expanded_w - w) / 2))
|
||||||
|
y = max(0, y - int((expanded_h - h) / 2))
|
||||||
|
w = min(img.shape[1] - x, expanded_w)
|
||||||
|
h = min(img.shape[0] - y, expanded_h)
|
||||||
|
|
||||||
|
# extract detected face unaligned
|
||||||
|
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||||
|
# align original image, then find projection of detected face area after alignment
|
||||||
|
if align is True: # and left_eye is not None and right_eye is not None:
|
||||||
|
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)
|
||||||
|
|
||||||
|
rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
|
||||||
|
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
|
||||||
|
)
|
||||||
|
detected_face = aligned_img[
|
||||||
|
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
|
||||||
|
]
|
||||||
|
|
||||||
|
# restore x, y, le and re before border added
|
||||||
|
x = x - width_border
|
||||||
|
y = y - height_border
|
||||||
|
# w and h will not change
|
||||||
|
if left_eye is not None:
|
||||||
|
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
|
||||||
|
if right_eye is not None:
|
||||||
|
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)
|
||||||
|
|
||||||
|
return DetectedFace(
|
||||||
|
img=detected_face,
|
||||||
|
facial_area=FacialAreaRegion(
|
||||||
|
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
|
||||||
|
),
|
||||||
|
confidence=confidence,
|
||||||
|
)
|
||||||
|
|
||||||
def align_img_wrt_eyes(
|
def align_img_wrt_eyes(
|
||||||
img: np.ndarray,
|
img: np.ndarray,
|
||||||
@ -327,7 +326,12 @@ def align_img_wrt_eyes(
|
|||||||
return img, 0
|
return img, 0
|
||||||
|
|
||||||
angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
|
angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
|
||||||
img = np.array(Image.fromarray(img).rotate(angle, resample=Image.BICUBIC))
|
|
||||||
|
(h, w) = img.shape[:2]
|
||||||
|
center = (w // 2, h // 2)
|
||||||
|
M = cv2.getRotationMatrix2D(center, -angle, 1.0)
|
||||||
|
img = cv2.warpAffine(img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0))
|
||||||
|
|
||||||
return img, angle
|
return img, angle
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user