mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Close #532, add docstring and some refactoring.
This commit is contained in:
parent
3f3f26a90d
commit
7b0f34cbb1
@ -29,7 +29,12 @@ elif tf_major_version == 2:
|
||||
# --------------------------------------------------
|
||||
|
||||
|
||||
def initialize_folder():
|
||||
def initialize_folder() -> None:
|
||||
"""Initialize the folder for storing weights and models.
|
||||
|
||||
Raises:
|
||||
OSError: if the folder cannot be created.
|
||||
"""
|
||||
home = get_deepface_home()
|
||||
|
||||
if not os.path.exists(home + "/.deepface"):
|
||||
@ -41,7 +46,12 @@ def initialize_folder():
|
||||
print("Directory ", home, "/.deepface/weights created")
|
||||
|
||||
|
||||
def get_deepface_home():
|
||||
def get_deepface_home() -> str:
|
||||
"""Get the home directory for storing weights and models.
|
||||
|
||||
Returns:
|
||||
str: the home directory.
|
||||
"""
|
||||
return str(os.getenv("DEEPFACE_HOME", default=str(Path.home())))
|
||||
|
||||
|
||||
@ -49,6 +59,14 @@ def get_deepface_home():
|
||||
|
||||
|
||||
def loadBase64Img(uri):
|
||||
"""Load image from base64 string.
|
||||
|
||||
Args:
|
||||
uri: a base64 string.
|
||||
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
encoded_data = uri.split(",")[1]
|
||||
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
|
||||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
@ -56,32 +74,38 @@ def loadBase64Img(uri):
|
||||
|
||||
|
||||
def load_image(img):
|
||||
"""Load image from path, url, base64 or numpy array.
|
||||
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
|
||||
Raises:
|
||||
ValueError: if the image path does not exist.
|
||||
|
||||
Returns:
|
||||
numpy array: the loaded image.
|
||||
"""
|
||||
exact_image = False
|
||||
base64_img = False
|
||||
url_img = False
|
||||
|
||||
# The image is already a numpy array
|
||||
if type(img).__module__ == np.__name__:
|
||||
exact_image = True
|
||||
# exact_image = True
|
||||
return img
|
||||
|
||||
# The image is a base64 string
|
||||
elif img.startswith("data:image/"):
|
||||
base64_img = True
|
||||
return loadBase64Img(img)
|
||||
|
||||
# The image is a url
|
||||
elif img.startswith("http"):
|
||||
url_img = True
|
||||
return np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("RGB"))[:, :, ::-1]
|
||||
|
||||
# ---------------------------
|
||||
|
||||
if base64_img is True:
|
||||
img = loadBase64Img(img)
|
||||
|
||||
elif url_img is True:
|
||||
img = np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("RGB"))
|
||||
|
||||
elif exact_image is not True: # image path passed as input
|
||||
# The image is a path
|
||||
if exact_image is not True: # image path passed as input
|
||||
if os.path.isfile(img) is not True:
|
||||
raise ValueError(f"Confirm that {img} exists")
|
||||
|
||||
img = cv2.imread(img)
|
||||
return cv2.imread(img)
|
||||
|
||||
return img
|
||||
|
||||
@ -96,7 +120,23 @@ def extract_faces(
|
||||
grayscale=False,
|
||||
enforce_detection=True,
|
||||
align=True,
|
||||
):
|
||||
) -> list:
|
||||
"""Extract faces from an image.
|
||||
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
target_size (tuple, optional): the target size of the extracted faces. Defaults to (224, 224).
|
||||
detector_backend (str, optional): the face detector backend. Defaults to "opencv".
|
||||
grayscale (bool, optional): whether to convert the extracted faces to grayscale. Defaults to False.
|
||||
enforce_detection (bool, optional): whether to enforce face detection. Defaults to True.
|
||||
align (bool, optional): whether to align the extracted faces. Defaults to True.
|
||||
|
||||
Raises:
|
||||
ValueError: if face could not be detected and enforce_detection is True.
|
||||
|
||||
Returns:
|
||||
list: a list of extracted faces.
|
||||
"""
|
||||
|
||||
# this is going to store a list of img itself (numpy), it region and confidence
|
||||
extracted_faces = []
|
||||
@ -109,7 +149,8 @@ def extract_faces(
|
||||
face_objs = [(img, img_region, 0)]
|
||||
else:
|
||||
face_detector = FaceDetector.build_model(detector_backend)
|
||||
face_objs = FaceDetector.detect_faces(face_detector, detector_backend, img, align)
|
||||
face_objs = FaceDetector.detect_faces(
|
||||
face_detector, detector_backend, img, align)
|
||||
|
||||
# in case of no face found
|
||||
if len(face_objs) == 0 and enforce_detection is True:
|
||||
@ -133,7 +174,8 @@ def extract_faces(
|
||||
factor_1 = target_size[1] / current_img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
|
||||
dsize = (int(current_img.shape[1] * factor), int(current_img.shape[0] * factor))
|
||||
dsize = (
|
||||
int(current_img.shape[1] * factor), int(current_img.shape[0] * factor))
|
||||
current_img = cv2.resize(current_img, dsize)
|
||||
|
||||
diff_0 = target_size[0] - current_img.shape[0]
|
||||
@ -152,7 +194,8 @@ def extract_faces(
|
||||
else:
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
((diff_0 // 2, diff_0 - diff_0 // 2), (diff_1 // 2, diff_1 - diff_1 // 2)),
|
||||
((diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2)),
|
||||
"constant",
|
||||
)
|
||||
|
||||
@ -161,7 +204,8 @@ def extract_faces(
|
||||
current_img = cv2.resize(current_img, target_size)
|
||||
|
||||
# normalizing the image pixels
|
||||
img_pixels = image.img_to_array(current_img) # what this line doing? must?
|
||||
# what this line doing? must?
|
||||
img_pixels = image.img_to_array(current_img)
|
||||
img_pixels = np.expand_dims(img_pixels, axis=0)
|
||||
img_pixels /= 255 # normalize input in [0, 1]
|
||||
|
||||
@ -185,6 +229,15 @@ def extract_faces(
|
||||
|
||||
|
||||
def normalize_input(img, normalization="base"):
|
||||
"""Normalize input image.
|
||||
|
||||
Args:
|
||||
img (numpy array): the input image.
|
||||
normalization (str, optional): the normalization technique. Defaults to "base", for no normalization.
|
||||
|
||||
Returns:
|
||||
numpy array: the normalized image.
|
||||
"""
|
||||
|
||||
# issue 131 declares that some normalization techniques improves the accuracy
|
||||
|
||||
@ -232,7 +285,15 @@ def normalize_input(img, normalization="base"):
|
||||
return img
|
||||
|
||||
|
||||
def find_target_size(model_name):
|
||||
def find_target_size(model_name: str) -> tuple:
|
||||
"""Find the target size of the model.
|
||||
|
||||
Args:
|
||||
model_name (str): the model name.
|
||||
|
||||
Returns:
|
||||
tuple: the target size.
|
||||
"""
|
||||
|
||||
target_sizes = {
|
||||
"VGG-Face": (224, 224),
|
||||
@ -267,6 +328,25 @@ def preprocess_face(
|
||||
enforce_detection=True,
|
||||
align=True,
|
||||
):
|
||||
"""Preprocess face.
|
||||
|
||||
Args:
|
||||
img (numpy array): the input image.
|
||||
target_size (tuple, optional): the target size. Defaults to (224, 224).
|
||||
detector_backend (str, optional): the detector backend. Defaults to "opencv".
|
||||
grayscale (bool, optional): whether to convert to grayscale. Defaults to False.
|
||||
enforce_detection (bool, optional): whether to enforce face detection. Defaults to True.
|
||||
align (bool, optional): whether to align the face. Defaults to True.
|
||||
|
||||
Returns:
|
||||
numpy array: the preprocessed face.
|
||||
|
||||
Raises:
|
||||
ValueError: if face is not detected and enforce_detection is True.
|
||||
|
||||
Deprecated:
|
||||
0.0.78: Use extract_faces instead of preprocess_face.
|
||||
"""
|
||||
print("⚠️ Function preprocess_face is deprecated. Use extract_faces instead.")
|
||||
result = None
|
||||
img_objs = extract_faces(
|
||||
|
Loading…
x
Reference in New Issue
Block a user