This commit is contained in:
Onur Atakan ULUSOY 2022-05-24 13:59:16 +00:00 committed by GitHub
parent 4cc2fd8782
commit 84a1ac64a5

View File

@ -1,151 +1,91 @@
import warnings import warnings
warnings.filterwarnings("ignore")
import os import os
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf
import cv2
from deepface import DeepFace
print("-----------------------------------------")
warnings.filterwarnings("ignore")
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import json tf_major_version = int(tf.__version__.split(".")[0])
import time
import unittest
#----------------------------------------- if tf_major_version == 2:
import tensorflow as tf
class deepface_unit_tests(unittest.TestCase):
def test_deepface(self):
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 2:
import logging import logging
tf.get_logger().setLevel(logging.ERROR) tf.get_logger().setLevel(logging.ERROR)
print("Running unit tests for TF ", tf.__version__) print("Running unit tests for TF ", tf.__version__)
from deepface import DeepFace print("-----------------------------------------")
from deepface.commons import functions
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
from deepface.extendedmodels import Age, Gender, Race, Emotion
print("-----------------------------------------") expected_coverage = 97
#----------------------------------------- num_cases = 0; succeed_cases = 0
def evaluate(condition):
global num_cases, succeed_cases
if condition is True:
succeed_cases += 1
num_cases += 1
# ------------------------------------------------
detectors = ['opencv', 'mtcnn', 'retinaface']
models = ['VGG-Face', 'Facenet', 'Facenet512', 'ArcFace', 'SFace']
metrics = ['cosine', 'euclidean', 'euclidean_l2']
dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img5.jpg', 'dataset/img6.jpg', True],
['dataset/img6.jpg', 'dataset/img7.jpg', True],
['dataset/img8.jpg', 'dataset/img9.jpg', True],
['dataset/img1.jpg', 'dataset/img11.jpg', True],
['dataset/img2.jpg', 'dataset/img11.jpg', True],
['dataset/img1.jpg', 'dataset/img3.jpg', False],
['dataset/img2.jpg', 'dataset/img3.jpg', False],
['dataset/img6.jpg', 'dataset/img8.jpg', False],
['dataset/img6.jpg', 'dataset/img9.jpg', False],
]
print("-----------------------------------------")
def test_cases():
print("DeepFace.detectFace test") print("DeepFace.detectFace test")
#detectors = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface']
detectors = ['opencv', 'ssd', 'mtcnn', 'retinaface']
for detector in detectors: for detector in detectors:
img = DeepFace.detectFace("dataset/img11.jpg", detector_backend = detector) img = DeepFace.detectFace("dataset/img11.jpg", detector_backend = detector)
evaluate(img.shape[0] > 0 and img.shape[1] > 0)
print(detector," test is done") print(detector," test is done")
#import matplotlib.pyplot as plt
#plt.imshow(img)
#plt.show()
#-----------------------------------------
print("-----------------------------------------") print("-----------------------------------------")
img_path = "dataset/img1.jpg" img_path = "dataset/img1.jpg"
embedding = DeepFace.represent(img_path) embedding = DeepFace.represent(img_path)
print("Function returned ", len(embedding), "dimensional vector") print("Function returned ", len(embedding), "dimensional vector")
evaluate(len(embedding) > 0)
model_name = "VGG-Face"
model = DeepFace.build_model(model_name)
print(model_name," is built")
embedding = DeepFace.represent(img_path, model = model)
print("Represent function returned ", len(embedding), "dimensional vector")
#-----------------------------------------
dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img1.jpg', 'dataset/img6.jpg', True]
]
print("-----------------------------------------") print("-----------------------------------------")
print("Face detectors test") print("Face detectors test")
print("retinaface detector") for detector in detectors:
res = DeepFace.verify(dataset, detector_backend = 'retinaface') print(detector + " detector")
print(res) res = DeepFace.verify(dataset[0][0], dataset[0][1], detector_backend = detector)
print("ssd detector")
res = DeepFace.verify(dataset, detector_backend = 'ssd')
print(res)
print("opencv detector")
res = DeepFace.verify(dataset, detector_backend = 'opencv')
print(res)
if False:
print("dlib detector")
res = DeepFace.verify(dataset, detector_backend = 'dlib')
print(res)
print("mtcnn detector")
res = DeepFace.verify(dataset, detector_backend = 'mtcnn')
print(res) print(res)
assert res["verified"] == dataset[0][2]
print("-----------------------------------------") print("-----------------------------------------")
print("Single find function test") print("Find function test")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset" df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset")
#, model_name = 'Dlib'
)
print(df.head()) print(df.head())
evaluate(df.shape[0] > 0)
print("-----------------------------------------")
print("Pre-built model for single find function test")
#model_name = "VGG-Face"
#model = DeepFace.build_model(model_name)
#print(model_name," is built")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset"
, model_name = model_name, model = model
)
print(df.head())
print("-----------------------------------------")
print("Bulk find function tests")
dfs = DeepFace.find(img_path = ["dataset/img1.jpg", "dataset/img2.jpg"], db_path = "dataset"
#, model_name = 'Dlib'
)
print(dfs[0].head())
print(dfs[1].head())
print("-----------------------------------------")
print("Bulk verification tests")
resp_obj = DeepFace.verify(dataset)
print(resp_obj)
print(resp_obj["pair_1"]["verified"] == True)
print(resp_obj["pair_2"]["verified"] == True)
print("-----------------------------------------")
print("Bulk facial analysis tests")
dataset = [
'dataset/img1.jpg',
'dataset/img2.jpg',
'dataset/img5.jpg',
'dataset/img6.jpg'
]
resp_obj = DeepFace.analyze(dataset)
print(resp_obj["instance_1"]["age"]," years old ", resp_obj["instance_1"]["dominant_emotion"], " ",resp_obj["instance_1"]["gender"])
print(resp_obj["instance_2"]["age"]," years old ", resp_obj["instance_2"]["dominant_emotion"], " ",resp_obj["instance_2"]["gender"])
print(resp_obj["instance_3"]["age"]," years old ", resp_obj["instance_3"]["dominant_emotion"], " ",resp_obj["instance_3"]["gender"])
print(resp_obj["instance_4"]["age"]," years old ", resp_obj["instance_4"]["dominant_emotion"], " ",resp_obj["instance_4"]["gender"])
print("-----------------------------------------") print("-----------------------------------------")
@ -155,6 +95,9 @@ class deepface_unit_tests(unittest.TestCase):
demography = DeepFace.analyze(img) demography = DeepFace.analyze(img)
print(demography) print(demography)
evaluate(demography["age"] > 20 and demography["age"] < 40)
evaluate(demography["gender"] == "Woman")
print("-----------------------------------------") print("-----------------------------------------")
print("Facial analysis test. Passing all to the action") print("Facial analysis test. Passing all to the action")
@ -169,6 +112,11 @@ class deepface_unit_tests(unittest.TestCase):
print("Race: ", demography["dominant_race"]) print("Race: ", demography["dominant_race"])
print("Emotion: ", demography["dominant_emotion"]) print("Emotion: ", demography["dominant_emotion"])
evaluate(demography.get("age") is not None)
evaluate(demography.get("gender") is not None)
evaluate(demography.get("dominant_race") is not None)
evaluate(demography.get("dominant_emotion") is not None)
print("-----------------------------------------") print("-----------------------------------------")
print("Facial analysis test 2. Remove some actions and check they are not computed") print("Facial analysis test 2. Remove some actions and check they are not computed")
@ -179,34 +127,16 @@ class deepface_unit_tests(unittest.TestCase):
print("Race: ", demography.get("dominant_race")) print("Race: ", demography.get("dominant_race"))
print("Emotion: ", demography.get("dominant_emotion")) print("Emotion: ", demography.get("dominant_emotion"))
evaluate(demography.get("age") is not None)
evaluate(demography.get("gender") is not None)
evaluate(demography.get("dominant_race") is None)
evaluate(demography.get("dominant_emotion") is None)
print("-----------------------------------------") print("-----------------------------------------")
print("Face recognition tests") print("Facial recognition tests")
dataset = [
['dataset/img1.jpg', 'dataset/img2.jpg', True],
['dataset/img5.jpg', 'dataset/img6.jpg', True],
['dataset/img6.jpg', 'dataset/img7.jpg', True],
['dataset/img8.jpg', 'dataset/img9.jpg', True],
['dataset/img1.jpg', 'dataset/img11.jpg', True],
['dataset/img2.jpg', 'dataset/img11.jpg', True],
['dataset/img1.jpg', 'dataset/img3.jpg', False],
['dataset/img2.jpg', 'dataset/img3.jpg', False],
['dataset/img6.jpg', 'dataset/img8.jpg', False],
['dataset/img6.jpg', 'dataset/img9.jpg', False],
]
#models = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace', 'DeepID', 'Dlib', 'ArcFace']
models = ['VGG-Face', 'Facenet', 'Facenet512', 'ArcFace', 'SFace'] #those are robust models
metrics = ['cosine', 'euclidean', 'euclidean_l2']
passed_tests = 0; test_cases = 0
for model in models: for model in models:
#prebuilt_model = DeepFace.build_model(model)
#print(model," is built")
for metric in metrics: for metric in metrics:
for instance in dataset: for instance in dataset:
img1 = instance[0] img1 = instance[0]
@ -215,110 +145,31 @@ class deepface_unit_tests(unittest.TestCase):
resp_obj = DeepFace.verify(img1, img2 resp_obj = DeepFace.verify(img1, img2
, model_name = model , model_name = model
#, model = prebuilt_model
, distance_metric = metric) , distance_metric = metric)
prediction = resp_obj["verified"] prediction = resp_obj["verified"]
distance = round(resp_obj["distance"], 2) distance = round(resp_obj["distance"], 2)
threshold = resp_obj["threshold"] threshold = resp_obj["threshold"]
test_result_label = "failed" passed = prediction == result
if prediction == result:
passed_tests = passed_tests + 1 evaluate(passed)
if passed:
test_result_label = "passed" test_result_label = "passed"
else:
test_result_label = "failed"
if prediction == True: if prediction == True:
classified_label = "verified" classified_label = "verified"
else: else:
classified_label = "unverified" classified_label = "unverified"
test_cases = test_cases + 1
print(img1.split("/")[-1], "-", img2.split("/")[-1], classified_label, "as same person based on", model,"and",metric,". Distance:",distance,", Threshold:", threshold,"(",test_result_label,")") print(img1.split("/")[-1], "-", img2.split("/")[-1], classified_label, "as same person based on", model,"and",metric,". Distance:",distance,", Threshold:", threshold,"(",test_result_label,")")
print("--------------------------") print("--------------------------")
#----------------------------------------- # -----------------------------------------
print("Passed unit tests: ",passed_tests," / ",test_cases)
min_score = 70
accuracy = 100 * passed_tests / test_cases
accuracy = round(accuracy, 2)
if accuracy >= min_score:
print("Unit tests are completed successfully. Score: ",accuracy,"%")
else:
raise ValueError("Unit test score does not satisfy the minimum required accuracy. Minimum expected score is ", min_score,"% but this got ",accuracy,"%")
#-----------------------------------
#-----------------------------------
print("Analyze function with passing pre-trained model")
emotion_model = DeepFace.build_model("Emotion")
age_model = DeepFace.build_model("Age")
gender_model = DeepFace.build_model("Gender")
race_model = DeepFace.build_model("Race")
facial_attribute_models = {}
facial_attribute_models["emotion"] = emotion_model
facial_attribute_models["age"] = age_model
facial_attribute_models["gender"] = gender_model
facial_attribute_models["race"] = race_model
resp_obj = DeepFace.analyze("dataset/img1.jpg", models=facial_attribute_models)
print(resp_obj)
#-----------------------------------
print("--------------------------")
if False:
print("Ensemble for find function")
df = DeepFace.find(img_path = "dataset/img1.jpg", db_path = "dataset", model_name = "Ensemble")
print(df.head())
#-----------------------------------
print("--------------------------")
if False:
print("Ensemble for verify function")
resp_obj = DeepFace.verify(dataset, model_name = "Ensemble")
for i in range(0, len(dataset)):
item = resp_obj['pair_%s' % (i+1)]
verified = item["verified"]
score = item["score"]
print(verified)
#-----------------------------------
print("--------------------------")
if False:
print("Pre-trained ensemble method - find")
from deepface import DeepFace
from deepface.basemodels import Boosting
model = Boosting.loadModel()
df = DeepFace.find("dataset/img1.jpg", db_path = "dataset", model_name = 'Ensemble', model = model, enforce_detection=False)
print(df)
#-----------------------------------
print("--------------------------")
if False:
print("Pre-trained ensemble method - verify")
res = DeepFace.verify(dataset, model_name = "Ensemble", model = model)
print(res)
#-----------------------------------
print("--------------------------")
import cv2
print("Passing numpy array to analyze function") print("Passing numpy array to analyze function")
@ -326,6 +177,9 @@ class deepface_unit_tests(unittest.TestCase):
resp_obj = DeepFace.analyze(img) resp_obj = DeepFace.analyze(img)
print(resp_obj) print(resp_obj)
evaluate(resp_obj["age"] > 20 and resp_obj["age"] < 40)
evaluate(resp_obj["gender"] == "Woman")
print("--------------------------") print("--------------------------")
print("Passing numpy array to verify function") print("Passing numpy array to verify function")
@ -336,6 +190,8 @@ class deepface_unit_tests(unittest.TestCase):
res = DeepFace.verify(img1, img2) res = DeepFace.verify(img1, img2)
print(res) print(res)
evaluate(res["verified"] == True)
print("--------------------------") print("--------------------------")
print("Passing numpy array to find function") print("Passing numpy array to find function")
@ -346,8 +202,22 @@ class deepface_unit_tests(unittest.TestCase):
print(df.head()) print(df.head())
evaluate(df.shape[0] > 0)
print("--------------------------") print("--------------------------")
self.assertEqual(accuracy >= min_score, True, "A problem on the deepface installation.") test_cases()
unittest.main(exit=False) print("num of test cases run: " + str(num_cases))
print("succeeded test cases: " + str(succeed_cases))
test_score = (100 * succeed_cases) / num_cases
print("test coverage: " + str(test_score))
if test_score > expected_coverage:
print("well done! min required test coverage is satisfied")
else:
print("min required test coverage is NOT satisfied")
assert test_score > expected_coverage