mirror of
https://github.com/serengil/deepface.git
synced 2025-06-05 19:15:23 +00:00
Merge pull request #6 from NatLee/patch/adjustment-0103-1
New Shared Prediction Method.
This commit is contained in:
commit
8883b212b2
127
.github/CODE_OF_CONDUCT.md
vendored
Normal file
127
.github/CODE_OF_CONDUCT.md
vendored
Normal file
@ -0,0 +1,127 @@
|
||||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, religion, or sexual identity
|
||||
and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to a positive environment for our
|
||||
community include:
|
||||
|
||||
* Demonstrating empathy and kindness toward other people
|
||||
* Being respectful of differing opinions, viewpoints, and experiences
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the
|
||||
overall community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or
|
||||
advances of any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email
|
||||
address, without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Enforcement Responsibilities
|
||||
|
||||
Community leaders are responsible for clarifying and enforcing our standards of
|
||||
acceptable behavior and will take appropriate and fair corrective action in
|
||||
response to any behavior that they deem inappropriate, threatening, offensive,
|
||||
or harmful.
|
||||
|
||||
Community leaders have the right and responsibility to remove, edit, or reject
|
||||
comments, commits, code, wiki edits, issues, and other contributions that are
|
||||
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
||||
decisions when appropriate.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies within all community spaces, and also applies when
|
||||
an individual is officially representing the community in public spaces.
|
||||
Examples of representing our community include using an official e-mail address,
|
||||
posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement at serengil@gmail.com.
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
reporter of any incident.
|
||||
|
||||
## Enforcement Guidelines
|
||||
|
||||
Community leaders will follow these Community Impact Guidelines in determining
|
||||
the consequences for any action they deem in violation of this Code of Conduct:
|
||||
|
||||
### 1. Correction
|
||||
|
||||
**Community Impact**: Use of inappropriate language or other behavior deemed
|
||||
unprofessional or unwelcome in the community.
|
||||
|
||||
**Consequence**: A private, written warning from community leaders, providing
|
||||
clarity around the nature of the violation and an explanation of why the
|
||||
behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series
|
||||
of actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or
|
||||
permanent ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
**Community Impact**: A serious violation of community standards, including
|
||||
sustained inappropriate behavior.
|
||||
|
||||
**Consequence**: A temporary ban from any sort of interaction or public
|
||||
communication with the community for a specified period of time. No public or
|
||||
private interaction with the people involved, including unsolicited interaction
|
||||
with those enforcing the Code of Conduct, is allowed during this period.
|
||||
Violating these terms may lead to a permanent ban.
|
||||
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within
|
||||
the community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.0, available at
|
||||
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
||||
|
||||
Community Impact Guidelines were inspired by [Mozilla's code of conduct
|
||||
enforcement ladder](https://github.com/mozilla/diversity).
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
https://www.contributor-covenant.org/faq. Translations are available at
|
||||
https://www.contributor-covenant.org/translations.
|
21
README.md
21
README.md
@ -16,6 +16,9 @@
|
||||
[](https://github.com/sponsors/serengil)
|
||||
[](https://buymeacoffee.com/serengil)
|
||||
|
||||
[](https://news.ycombinator.com/item?id=42584896)
|
||||
[](https://www.producthunt.com/posts/deepface?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-deepface)
|
||||
|
||||
<!-- [](https://doi.org/10.1109/ICEET53442.2021.9659697) -->
|
||||
<!-- [](https://doi.org/10.1109/ASYU50717.2020.9259802) -->
|
||||
|
||||
@ -392,7 +395,7 @@ Before creating a PR, you should run the unit tests and linting locally by runni
|
||||
|
||||
There are many ways to support a project - starring⭐️ the GitHub repo is just one 🙏
|
||||
|
||||
If you do like this work, then you can support it financially on [Patreon](https://www.patreon.com/serengil?repo=deepface), [GitHub Sponsors](https://github.com/sponsors/serengil) or [Buy Me a Coffee](https://buymeacoffee.com/serengil).
|
||||
If you do like this work, then you can support it financially on [Patreon](https://www.patreon.com/serengil?repo=deepface), [GitHub Sponsors](https://github.com/sponsors/serengil) or [Buy Me a Coffee](https://buymeacoffee.com/serengil). Also, your company's logo will be shown on README on GitHub and PyPI if you become a sponsor in gold, silver or bronze tiers.
|
||||
|
||||
<a href="https://www.patreon.com/serengil?repo=deepface">
|
||||
<img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/patreon.png" width="30%" height="30%">
|
||||
@ -402,13 +405,25 @@ If you do like this work, then you can support it financially on [Patreon](https
|
||||
<img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/bmc-button.png" width="25%" height="25%">
|
||||
</a>
|
||||
|
||||
Also, your company's logo will be shown on README on GitHub and PyPI if you become a sponsor in gold, silver or bronze tiers.
|
||||
Additionally, you can help us reach a wider audience by upvoting our posts on Hacker News and Product Hunt.
|
||||
|
||||
<div style="display: flex; align-items: center; gap: 10px;">
|
||||
<!-- Hacker News Badge -->
|
||||
<a href="https://news.ycombinator.com/item?id=42584896">
|
||||
<img src="https://hackerbadge.vercel.app/api?id=42584896&type=orange" style="width: 250px; height: 54px;" width="250" alt="Featured on Hacker News">
|
||||
</a>
|
||||
|
||||
<!-- Product Hunt Badge -->
|
||||
<a href="https://www.producthunt.com/posts/deepface?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-deepface" target="_blank">
|
||||
<img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=753599&theme=light" alt="DeepFace - A Lightweight Deep Face Recognition Library for Python | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
|
||||
</a>
|
||||
</div>
|
||||
|
||||
## Citation
|
||||
|
||||
Please cite deepface in your publications if it helps your research - see [`CITATIONS`](https://github.com/serengil/deepface/blob/master/CITATION.md) for more details. Here are its BibTex entries:
|
||||
|
||||
If you use deepface in your research for facial recogntion or face detection purposes, please cite these publications:
|
||||
If you use deepface in your research for facial recognition or face detection purposes, please cite these publications:
|
||||
|
||||
```BibTeX
|
||||
@article{serengil2024lightface,
|
||||
|
@ -2,7 +2,7 @@
|
||||
import os
|
||||
import warnings
|
||||
import logging
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
from typing import Any, Dict, IO, List, Union, Optional
|
||||
|
||||
# this has to be set before importing tensorflow
|
||||
os.environ["TF_USE_LEGACY_KERAS"] = "1"
|
||||
@ -68,28 +68,30 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
|
||||
|
||||
|
||||
def verify(
|
||||
img1_path: Union[str, np.ndarray, List[float]],
|
||||
img2_path: Union[str, np.ndarray, List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
img1_path: Union[str, np.ndarray, IO[bytes], List[float]],
|
||||
img2_path: Union[str, np.ndarray, IO[bytes], List[float]],
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
threshold: Optional[float] = None,
|
||||
anti_spoofing: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Verify if an image pair represents the same person or different persons.
|
||||
Args:
|
||||
img1_path (str or np.ndarray or List[float]): Path to the first image.
|
||||
Accepts exact image path as a string, numpy array (BGR), base64 encoded images
|
||||
img1_path (str or np.ndarray or IO[bytes] or List[float]): Path to the first image.
|
||||
Accepts exact image path as a string, numpy array (BGR), a file object that supports
|
||||
at least `.read` and is opened in binary mode, base64 encoded images
|
||||
or pre-calculated embeddings.
|
||||
|
||||
img2_path (str or np.ndarray or List[float]): Path to the second image.
|
||||
Accepts exact image path as a string, numpy array (BGR), base64 encoded images
|
||||
img2_path (str or np.ndarray or IO[bytes] or List[float]): Path to the second image.
|
||||
Accepts exact image path as a string, numpy array (BGR), a file object that supports
|
||||
at least `.read` and is opened in binary mode, base64 encoded images
|
||||
or pre-calculated embeddings.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
@ -164,21 +166,22 @@ def verify(
|
||||
|
||||
|
||||
def analyze(
|
||||
img_path: Union[str, np.ndarray],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray, IO[bytes]],
|
||||
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
silent: bool = False,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
img_path (str or np.ndarray or IO[bytes]): The exact path to the image, a numpy array
|
||||
in BGR format, a file object that supports at least `.read` and is opened in binary
|
||||
mode, or a base64 encoded image. If the source image contains multiple faces,
|
||||
the result will include information for each detected face.
|
||||
|
||||
actions (tuple): Attributes to analyze. The default is ('age', 'gender', 'emotion', 'race').
|
||||
You can exclude some of these attributes from the analysis if needed.
|
||||
@ -263,27 +266,28 @@ def analyze(
|
||||
|
||||
|
||||
def find(
|
||||
img_path: Union[str, np.ndarray],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
img_path: Union[str, np.ndarray, IO[bytes]],
|
||||
db_path: str,
|
||||
model_name: str = "VGG-Face",
|
||||
distance_metric: str = "cosine",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
threshold: Optional[float] = None,
|
||||
normalization: str = "base",
|
||||
silent: bool = False,
|
||||
refresh_database: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
batched: bool = False,
|
||||
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
|
||||
"""
|
||||
Identify individuals in a database
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
img_path (str or np.ndarray or IO[bytes]): The exact path to the image, a numpy array
|
||||
in BGR format, a file object that supports at least `.read` and is opened in binary
|
||||
mode, or a base64 encoded image. If the source image contains multiple
|
||||
faces, the result will include information for each detected face.
|
||||
|
||||
db_path (string): Path to the folder containing image files. All detected faces
|
||||
in the database will be considered in the decision-making process.
|
||||
@ -369,23 +373,24 @@ def find(
|
||||
|
||||
|
||||
def represent(
|
||||
img_path: Union[str, np.ndarray],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
img_path: Union[str, np.ndarray, IO[bytes]],
|
||||
model_name: str = "VGG-Face",
|
||||
enforce_detection: bool = True,
|
||||
detector_backend: str = "opencv",
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
normalization: str = "base",
|
||||
anti_spoofing: bool = False,
|
||||
max_faces: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Represent facial images as multi-dimensional vector embeddings.
|
||||
|
||||
Args:
|
||||
img_path (str or np.ndarray): The exact path to the image, a numpy array in BGR format,
|
||||
or a base64 encoded image. If the source image contains multiple faces, the result will
|
||||
include information for each detected face.
|
||||
img_path (str or np.ndarray or IO[bytes]): The exact path to the image, a numpy array
|
||||
in BGR format, a file object that supports at least `.read` and is opened in binary
|
||||
mode, or a base64 encoded image. If the source image contains multiple faces,
|
||||
the result will include information for each detected face.
|
||||
|
||||
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
|
||||
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet
|
||||
@ -441,15 +446,16 @@ def represent(
|
||||
|
||||
|
||||
def stream(
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
db_path: str = "",
|
||||
model_name: str = "VGG-Face",
|
||||
detector_backend: str = "opencv",
|
||||
distance_metric: str = "cosine",
|
||||
enable_face_analysis: bool = True,
|
||||
source: Any = 0,
|
||||
time_threshold: int = 5,
|
||||
frame_threshold: int = 5,
|
||||
anti_spoofing: bool = False,
|
||||
output_path: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Run real time face recognition and facial attribute analysis
|
||||
@ -478,6 +484,10 @@ def stream(
|
||||
frame_threshold (int): The frame threshold for face recognition (default is 5).
|
||||
|
||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||
|
||||
output_path (str): Path to save the output video. (default is None
|
||||
If None, no video is saved).
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@ -495,26 +505,28 @@ def stream(
|
||||
time_threshold=time_threshold,
|
||||
frame_threshold=frame_threshold,
|
||||
anti_spoofing=anti_spoofing,
|
||||
output_path=output_path,
|
||||
)
|
||||
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
img_path: Union[str, np.ndarray, IO[bytes]],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
expand_percentage: int = 0,
|
||||
grayscale: bool = False,
|
||||
color_face: str = "rgb",
|
||||
normalize_face: bool = True,
|
||||
anti_spoofing: bool = False,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extract faces from a given image
|
||||
|
||||
Args:
|
||||
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
img_path (str or np.ndarray or IO[bytes]): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), a file object that supports at least `.read` and is
|
||||
opened in binary mode, or base64 encoded images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
@ -584,11 +596,11 @@ def cli() -> None:
|
||||
|
||||
|
||||
def detectFace(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: tuple = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
) -> Union[np.ndarray, None]:
|
||||
"""
|
||||
Deprecated face detection function. Use extract_faces for same functionality.
|
||||
|
@ -1,7 +1,7 @@
|
||||
# built-in dependencies
|
||||
import os
|
||||
import io
|
||||
from typing import List, Union, Tuple
|
||||
from typing import Generator, IO, List, Union, Tuple
|
||||
import hashlib
|
||||
import base64
|
||||
from pathlib import Path
|
||||
@ -14,6 +14,10 @@ from PIL import Image
|
||||
from werkzeug.datastructures import FileStorage
|
||||
|
||||
|
||||
IMAGE_EXTS = {".jpg", ".jpeg", ".png"}
|
||||
PIL_EXTS = {"jpeg", "png"}
|
||||
|
||||
|
||||
def list_images(path: str) -> List[str]:
|
||||
"""
|
||||
List images in a given path
|
||||
@ -25,19 +29,31 @@ def list_images(path: str) -> List[str]:
|
||||
images = []
|
||||
for r, _, f in os.walk(path):
|
||||
for file in f:
|
||||
exact_path = os.path.join(r, file)
|
||||
|
||||
ext_lower = os.path.splitext(exact_path)[-1].lower()
|
||||
|
||||
if ext_lower not in {".jpg", ".jpeg", ".png"}:
|
||||
continue
|
||||
|
||||
with Image.open(exact_path) as img: # lazy
|
||||
if img.format.lower() in {"jpeg", "png"}:
|
||||
images.append(exact_path)
|
||||
if os.path.splitext(file)[1].lower() in IMAGE_EXTS:
|
||||
exact_path = os.path.join(r, file)
|
||||
with Image.open(exact_path) as img: # lazy
|
||||
if img.format.lower() in PIL_EXTS:
|
||||
images.append(exact_path)
|
||||
return images
|
||||
|
||||
|
||||
def yield_images(path: str) -> Generator[str, None, None]:
|
||||
"""
|
||||
Yield images in a given path
|
||||
Args:
|
||||
path (str): path's location
|
||||
Yields:
|
||||
image (str): image path
|
||||
"""
|
||||
for r, _, f in os.walk(path):
|
||||
for file in f:
|
||||
if os.path.splitext(file)[1].lower() in IMAGE_EXTS:
|
||||
exact_path = os.path.join(r, file)
|
||||
with Image.open(exact_path) as img: # lazy
|
||||
if img.format.lower() in PIL_EXTS:
|
||||
yield exact_path
|
||||
|
||||
|
||||
def find_image_hash(file_path: str) -> str:
|
||||
"""
|
||||
Find the hash of given image file with its properties
|
||||
@ -61,11 +77,11 @@ def find_image_hash(file_path: str) -> str:
|
||||
return hasher.hexdigest()
|
||||
|
||||
|
||||
def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
def load_image(img: Union[str, np.ndarray, IO[bytes]]) -> Tuple[np.ndarray, str]:
|
||||
"""
|
||||
Load image from path, url, base64 or numpy array.
|
||||
Load image from path, url, file object, base64 or numpy array.
|
||||
Args:
|
||||
img: a path, url, base64 or numpy array.
|
||||
img: a path, url, file object, base64 or numpy array.
|
||||
Returns:
|
||||
image (numpy array): the loaded image in BGR format
|
||||
image name (str): image name itself
|
||||
@ -75,6 +91,14 @@ def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
if isinstance(img, np.ndarray):
|
||||
return img, "numpy array"
|
||||
|
||||
# The image is an object that supports `.read`
|
||||
if hasattr(img, 'read') and callable(img.read):
|
||||
if isinstance(img, io.StringIO):
|
||||
raise ValueError(
|
||||
'img requires bytes and cannot be an io.StringIO object.'
|
||||
)
|
||||
return load_image_from_io_object(img), 'io object'
|
||||
|
||||
if isinstance(img, Path):
|
||||
img = str(img)
|
||||
|
||||
@ -104,6 +128,32 @@ def load_image(img: Union[str, np.ndarray]) -> Tuple[np.ndarray, str]:
|
||||
return img_obj_bgr, img
|
||||
|
||||
|
||||
def load_image_from_io_object(obj: IO[bytes]) -> np.ndarray:
|
||||
"""
|
||||
Load image from an object that supports being read
|
||||
Args:
|
||||
obj: a file like object.
|
||||
Returns:
|
||||
img (np.ndarray): The decoded image as a numpy array (OpenCV format).
|
||||
"""
|
||||
try:
|
||||
_ = obj.seek(0)
|
||||
except (AttributeError, TypeError, io.UnsupportedOperation):
|
||||
seekable = False
|
||||
obj = io.BytesIO(obj.read())
|
||||
else:
|
||||
seekable = True
|
||||
try:
|
||||
nparr = np.frombuffer(obj.read(), np.uint8)
|
||||
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
if img is None:
|
||||
raise ValueError("Failed to decode image")
|
||||
return img
|
||||
finally:
|
||||
if not seekable:
|
||||
obj.close()
|
||||
|
||||
|
||||
def load_image_from_base64(uri: str) -> np.ndarray:
|
||||
"""
|
||||
Load image from base64 string.
|
||||
|
@ -21,28 +21,54 @@ class Demography(ABC):
|
||||
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> Union[np.ndarray, np.float64]:
|
||||
pass
|
||||
|
||||
def _preprocess_batch_or_single_input(self, img: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
|
||||
def _predict_internal(self, img_batch: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Predict for single image or batched images.
|
||||
This method uses legacy method while receiving single image as input.
|
||||
And switch to batch prediction if receives batched images.
|
||||
|
||||
Args:
|
||||
img_batch:
|
||||
Batch of images as np.ndarray (n, x, y, c)
|
||||
with n >= 1, x = image width, y = image height, c = channel
|
||||
Or Single image as np.ndarray (1, x, y, c)
|
||||
with x = image width, y = image height and c = channel
|
||||
The channel dimension may be omitted if the image is grayscale. (For emotion model)
|
||||
"""
|
||||
if not self.model_name: # Check if called from derived class
|
||||
raise NotImplementedError("no model selected")
|
||||
assert img_batch.ndim == 4, "expected 4-dimensional tensor input"
|
||||
# Single image
|
||||
if img_batch.shape[0] == 1:
|
||||
# Check if grayscale by checking last dimension, if not 3, it is grayscale.
|
||||
if img_batch.shape[-1] != 3:
|
||||
# Remove batch dimension
|
||||
img_batch = img_batch.squeeze(0)
|
||||
# Predict with legacy method.
|
||||
return self.model(img_batch, training=False).numpy()[0, :]
|
||||
# Batch of images
|
||||
# Predict with batch prediction
|
||||
return self.model.predict_on_batch(img_batch)
|
||||
|
||||
def _preprocess_batch_or_single_input(
|
||||
self,
|
||||
img: Union[np.ndarray, List[np.ndarray]]
|
||||
) -> np.ndarray:
|
||||
|
||||
"""
|
||||
Preprocess single or batch of images, return as 4-D numpy array.
|
||||
Args:
|
||||
img: Single image as np.ndarray (224, 224, 3) or
|
||||
List of images as List[np.ndarray] or
|
||||
Batch of images as np.ndarray (n, 224, 224, 3)
|
||||
List of images as List[np.ndarray] or
|
||||
Batch of images as np.ndarray (n, 224, 224, 3)
|
||||
Returns:
|
||||
Four-dimensional numpy array (n, 224, 224, 3)
|
||||
"""
|
||||
if isinstance(img, list): # Convert from list to image batch.
|
||||
image_batch = np.array(img)
|
||||
else:
|
||||
image_batch = img
|
||||
|
||||
image_batch = np.array(img)
|
||||
# Remove batch dimension in advance if exists
|
||||
image_batch = image_batch.squeeze()
|
||||
|
||||
# Check input dimension
|
||||
if len(image_batch.shape) == 3:
|
||||
# Single image - add batch dimension
|
||||
image_batch = np.expand_dims(image_batch, axis=0)
|
||||
|
||||
return image_batch
|
||||
|
@ -54,9 +54,9 @@ class ApparentAgeClient(Demography):
|
||||
# Preprocessing input image or image list.
|
||||
imgs = self._preprocess_batch_or_single_input(img)
|
||||
|
||||
# Batch prediction
|
||||
age_predictions = self.model.predict_on_batch(imgs)
|
||||
|
||||
# Prediction from 3 channels image
|
||||
age_predictions = self._predict_internal(imgs)
|
||||
|
||||
# Calculate apparent ages
|
||||
apparent_ages = np.array(
|
||||
[find_apparent_age(age_prediction) for age_prediction in age_predictions]
|
||||
|
@ -72,14 +72,17 @@ class EmotionClient(Demography):
|
||||
# Preprocessing input image or image list.
|
||||
imgs = self._preprocess_batch_or_single_input(img)
|
||||
|
||||
# Preprocess each image
|
||||
processed_imgs = np.array([self._preprocess_image(img) for img in imgs])
|
||||
|
||||
# Add channel dimension for grayscale images
|
||||
processed_imgs = np.expand_dims(processed_imgs, axis=-1)
|
||||
if imgs.shape[0] == 1:
|
||||
# Preprocess single image and add channel dimension for grayscale images
|
||||
processed_imgs = np.expand_dims(np.array([self._preprocess_image(img) for img in imgs]), axis=0)
|
||||
else:
|
||||
# Preprocess batch of images and add channel dimension for grayscale images
|
||||
processed_imgs = np.expand_dims(np.array([self._preprocess_image(img) for img in imgs]), axis=-1)
|
||||
# Reshape input for model (expected shape=(n, 48, 48, 1)), where n is the batch size
|
||||
processed_imgs = processed_imgs.reshape(processed_imgs.shape[0], 48, 48, 1)
|
||||
|
||||
# Batch prediction
|
||||
predictions = self.model.predict_on_batch(processed_imgs)
|
||||
# Prediction
|
||||
predictions = self._predict_internal(processed_imgs)
|
||||
|
||||
return predictions
|
||||
|
||||
|
@ -54,8 +54,8 @@ class GenderClient(Demography):
|
||||
# Preprocessing input image or image list.
|
||||
imgs = self._preprocess_batch_or_single_input(img)
|
||||
|
||||
# Batch prediction
|
||||
predictions = self.model.predict_on_batch(imgs)
|
||||
# Prediction
|
||||
predictions = self._predict_internal(imgs)
|
||||
|
||||
return predictions
|
||||
|
||||
|
@ -54,8 +54,8 @@ class RaceClient(Demography):
|
||||
# Preprocessing input image or image list.
|
||||
imgs = self._preprocess_batch_or_single_input(img)
|
||||
|
||||
# Batch prediction
|
||||
predictions = self.model.predict_on_batch(imgs)
|
||||
# Prediction
|
||||
predictions = self._predict_internal(imgs)
|
||||
|
||||
return predictions
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# built-in dependencies
|
||||
from typing import Any, Dict, List, Union
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
# 3rd party dependencies
|
||||
import numpy as np
|
||||
@ -117,8 +117,6 @@ def analyze(
|
||||
f"Invalid action passed ({repr(action)})). "
|
||||
"Valid actions are `emotion`, `age`, `gender`, `race`."
|
||||
)
|
||||
# ---------------------------------
|
||||
resp_objects = []
|
||||
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=img_path,
|
||||
@ -130,109 +128,105 @@ def analyze(
|
||||
anti_spoofing=anti_spoofing,
|
||||
)
|
||||
|
||||
# Anti-spoofing check
|
||||
if anti_spoofing and any(img_obj.get("is_real", True) is False for img_obj in img_objs):
|
||||
raise ValueError("Spoof detected in the given image.")
|
||||
|
||||
# Prepare the input for the model
|
||||
valid_faces = []
|
||||
face_regions = []
|
||||
face_confidences = []
|
||||
|
||||
for img_obj in img_objs:
|
||||
# Extract the face content
|
||||
def preprocess_face(img_obj: Dict[str, Any]) -> Optional[np.ndarray]:
|
||||
"""
|
||||
Preprocess the face image for analysis.
|
||||
"""
|
||||
img_content = img_obj["face"]
|
||||
# Check if the face content is empty
|
||||
if img_content.shape[0] == 0 or img_content.shape[1] == 0:
|
||||
continue
|
||||
return None
|
||||
img_content = img_content[:, :, ::-1] # BGR to RGB
|
||||
return preprocessing.resize_image(img=img_content, target_size=(224, 224))
|
||||
|
||||
# Convert the image to RGB format from BGR
|
||||
img_content = img_content[:, :, ::-1]
|
||||
# Resize the image to the target size for the model
|
||||
img_content = preprocessing.resize_image(img=img_content, target_size=(224, 224))
|
||||
|
||||
valid_faces.append(img_content)
|
||||
face_regions.append(img_obj["facial_area"])
|
||||
face_confidences.append(img_obj["confidence"])
|
||||
|
||||
# If no valid faces are found, return an empty list
|
||||
if not valid_faces:
|
||||
# Filter out empty faces
|
||||
face_data = [(preprocess_face(img_obj), img_obj["facial_area"], img_obj["confidence"])
|
||||
for img_obj in img_objs if img_obj["face"].size > 0]
|
||||
|
||||
if not face_data:
|
||||
return []
|
||||
|
||||
# Convert the list of valid faces to a numpy array
|
||||
# Unpack the face data
|
||||
valid_faces, face_regions, face_confidences = zip(*face_data)
|
||||
faces_array = np.array(valid_faces)
|
||||
|
||||
# Create placeholder response objects for each face
|
||||
for _ in range(len(valid_faces)):
|
||||
resp_objects.append({})
|
||||
# Initialize the results list with face regions and confidence scores
|
||||
results = [{"region": region, "face_confidence": conf}
|
||||
for region, conf in zip(face_regions, face_confidences)]
|
||||
|
||||
|
||||
# For each action, predict the corresponding attribute
|
||||
# Iterate over the actions and perform analysis
|
||||
pbar = tqdm(
|
||||
range(0, len(actions)),
|
||||
actions,
|
||||
desc="Finding actions",
|
||||
disable=silent if len(actions) > 1 else True,
|
||||
)
|
||||
|
||||
for index in pbar:
|
||||
action = actions[index]
|
||||
|
||||
for action in pbar:
|
||||
pbar.set_description(f"Action: {action}")
|
||||
model = modeling.build_model(task="facial_attribute", model_name=action.capitalize())
|
||||
predictions = model.predict(faces_array)
|
||||
|
||||
# If the model returns a single prediction, reshape it to match the number of faces.
|
||||
# Determine the correct shape of predictions by using number of faces and predictions shape.
|
||||
# Example: For 1 face with Emotion model, predictions will be reshaped to (1, 7).
|
||||
if faces_array.shape[0] == 1 and len(predictions.shape) == 1:
|
||||
# For models like `Emotion`, which return a single prediction for a single face
|
||||
predictions = predictions.reshape(1, -1)
|
||||
|
||||
# Update the results with the predictions
|
||||
# ----------------------------------------
|
||||
# For emotion, calculate the percentage of each emotion and find the dominant emotion
|
||||
if action == "emotion":
|
||||
# Build the emotion model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Emotion")
|
||||
emotion_predictions = model.predict(faces_array)
|
||||
|
||||
for idx, predictions in enumerate(emotion_predictions):
|
||||
sum_of_predictions = predictions.sum()
|
||||
resp_objects[idx]["emotion"] = {}
|
||||
|
||||
for i, emotion_label in enumerate(Emotion.labels):
|
||||
emotion_prediction = 100 * predictions[i] / sum_of_predictions
|
||||
resp_objects[idx]["emotion"][emotion_label] = emotion_prediction
|
||||
|
||||
resp_objects[idx]["dominant_emotion"] = Emotion.labels[np.argmax(predictions)]
|
||||
|
||||
emotion_results = [
|
||||
{
|
||||
"emotion": {
|
||||
label: 100 * pred[i] / pred.sum()
|
||||
for i, label in enumerate(Emotion.labels)
|
||||
},
|
||||
"dominant_emotion": Emotion.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, emotion_result in zip(results, emotion_results):
|
||||
result.update(emotion_result)
|
||||
# ----------------------------------------
|
||||
# For age, find the dominant age category (0-100)
|
||||
elif action == "age":
|
||||
# Build the age model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Age")
|
||||
age_predictions = model.predict(faces_array)
|
||||
|
||||
for idx, age in enumerate(age_predictions):
|
||||
resp_objects[idx]["age"] = int(age)
|
||||
|
||||
age_results = [{"age": int(np.argmax(pred) if len(pred.shape) > 0 else pred)}
|
||||
for pred in predictions]
|
||||
for result, age_result in zip(results, age_results):
|
||||
result.update(age_result)
|
||||
# ----------------------------------------
|
||||
# For gender, calculate the percentage of each gender and find the dominant gender
|
||||
elif action == "gender":
|
||||
# Build the gender model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Gender")
|
||||
gender_predictions = model.predict(faces_array)
|
||||
|
||||
for idx, predictions in enumerate(gender_predictions):
|
||||
resp_objects[idx]["gender"] = {}
|
||||
|
||||
for i, gender_label in enumerate(Gender.labels):
|
||||
gender_prediction = 100 * predictions[i]
|
||||
resp_objects[idx]["gender"][gender_label] = gender_prediction
|
||||
|
||||
resp_objects[idx]["dominant_gender"] = Gender.labels[np.argmax(predictions)]
|
||||
|
||||
gender_results = [
|
||||
{
|
||||
"gender": {
|
||||
label: 100 * pred[i]
|
||||
for i, label in enumerate(Gender.labels)
|
||||
},
|
||||
"dominant_gender": Gender.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, gender_result in zip(results, gender_results):
|
||||
result.update(gender_result)
|
||||
# ----------------------------------------
|
||||
# For race, calculate the percentage of each race and find the dominant race
|
||||
elif action == "race":
|
||||
# Build the race model
|
||||
model = modeling.build_model(task="facial_attribute", model_name="Race")
|
||||
race_predictions = model.predict(faces_array)
|
||||
|
||||
for idx, predictions in enumerate(race_predictions):
|
||||
sum_of_predictions = predictions.sum()
|
||||
resp_objects[idx]["race"] = {}
|
||||
|
||||
for i, race_label in enumerate(Race.labels):
|
||||
race_prediction = 100 * predictions[i] / sum_of_predictions
|
||||
resp_objects[idx]["race"][race_label] = race_prediction
|
||||
|
||||
resp_objects[idx]["dominant_race"] = Race.labels[np.argmax(predictions)]
|
||||
race_results = [
|
||||
{
|
||||
"race": {
|
||||
label: 100 * pred[i] / pred.sum()
|
||||
for i, label in enumerate(Race.labels)
|
||||
},
|
||||
"dominant_race": Race.labels[np.argmax(pred)]
|
||||
}
|
||||
for pred in predictions
|
||||
]
|
||||
for result, race_result in zip(results, race_results):
|
||||
result.update(race_result)
|
||||
|
||||
# Add the face region and confidence to the response objects
|
||||
for idx, resp_obj in enumerate(resp_objects):
|
||||
resp_obj["region"] = face_regions[idx]
|
||||
resp_obj["face_confidence"] = face_confidences[idx]
|
||||
|
||||
return resp_objects
|
||||
return results
|
||||
|
@ -1,5 +1,5 @@
|
||||
# built-in dependencies
|
||||
from typing import Any, Dict, List, Tuple, Union, Optional
|
||||
from typing import Any, Dict, IO, List, Tuple, Union, Optional
|
||||
|
||||
# 3rd part dependencies
|
||||
from heapq import nlargest
|
||||
@ -19,7 +19,7 @@ logger = Logger()
|
||||
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
img_path: Union[str, np.ndarray, IO[bytes]],
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
@ -34,8 +34,9 @@ def extract_faces(
|
||||
Extract faces from a given image
|
||||
|
||||
Args:
|
||||
img_path (str or np.ndarray): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), or base64 encoded images.
|
||||
img_path (str or np.ndarray or IO[bytes]): Path to the first image. Accepts exact image path
|
||||
as a string, numpy array (BGR), a file object that supports at least `.read` and is
|
||||
opened in binary mode, or base64 encoded images.
|
||||
|
||||
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
|
||||
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
|
||||
|
@ -136,7 +136,7 @@ def find(
|
||||
representations = []
|
||||
|
||||
# required columns for representations
|
||||
df_cols = [
|
||||
df_cols = {
|
||||
"identity",
|
||||
"hash",
|
||||
"embedding",
|
||||
@ -144,12 +144,12 @@ def find(
|
||||
"target_y",
|
||||
"target_w",
|
||||
"target_h",
|
||||
]
|
||||
}
|
||||
|
||||
# Ensure the proper pickle file exists
|
||||
if not os.path.exists(datastore_path):
|
||||
with open(datastore_path, "wb") as f:
|
||||
pickle.dump([], f)
|
||||
pickle.dump([], f, pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
# Load the representations from the pickle file
|
||||
with open(datastore_path, "rb") as f:
|
||||
@ -157,18 +157,15 @@ def find(
|
||||
|
||||
# check each item of representations list has required keys
|
||||
for i, current_representation in enumerate(representations):
|
||||
missing_keys = set(df_cols) - set(current_representation.keys())
|
||||
missing_keys = df_cols - set(current_representation.keys())
|
||||
if len(missing_keys) > 0:
|
||||
raise ValueError(
|
||||
f"{i}-th item does not have some required keys - {missing_keys}."
|
||||
f"Consider to delete {datastore_path}"
|
||||
)
|
||||
|
||||
# embedded images
|
||||
pickled_images = [representation["identity"] for representation in representations]
|
||||
|
||||
# Get the list of images on storage
|
||||
storage_images = image_utils.list_images(path=db_path)
|
||||
storage_images = set(image_utils.yield_images(path=db_path))
|
||||
|
||||
if len(storage_images) == 0 and refresh_database is True:
|
||||
raise ValueError(f"No item found in {db_path}")
|
||||
@ -186,8 +183,13 @@ def find(
|
||||
|
||||
# Enforce data consistency amongst on disk images and pickle file
|
||||
if refresh_database:
|
||||
new_images = set(storage_images) - set(pickled_images) # images added to storage
|
||||
old_images = set(pickled_images) - set(storage_images) # images removed from storage
|
||||
# embedded images
|
||||
pickled_images = {
|
||||
representation["identity"] for representation in representations
|
||||
}
|
||||
|
||||
new_images = storage_images - pickled_images # images added to storage
|
||||
old_images = pickled_images - storage_images # images removed from storage
|
||||
|
||||
# detect replaced images
|
||||
for current_representation in representations:
|
||||
@ -232,7 +234,7 @@ def find(
|
||||
|
||||
if must_save_pickle:
|
||||
with open(datastore_path, "wb") as f:
|
||||
pickle.dump(representations, f)
|
||||
pickle.dump(representations, f, pickle.HIGHEST_PROTOCOL)
|
||||
if not silent:
|
||||
logger.info(f"There are now {len(representations)} representations in {file_name}")
|
||||
|
||||
|
@ -22,6 +22,7 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
IDENTIFIED_IMG_SIZE = 112
|
||||
TEXT_COLOR = (255, 255, 255)
|
||||
|
||||
|
||||
# pylint: disable=unused-variable
|
||||
def analysis(
|
||||
db_path: str,
|
||||
@ -33,6 +34,7 @@ def analysis(
|
||||
time_threshold=5,
|
||||
frame_threshold=5,
|
||||
anti_spoofing: bool = False,
|
||||
output_path: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Run real time face recognition and facial attribute analysis
|
||||
@ -62,6 +64,8 @@ def analysis(
|
||||
|
||||
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
|
||||
|
||||
output_path (str): Path to save the output video. (default is None
|
||||
If None, no video is saved).
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@ -77,12 +81,31 @@ def analysis(
|
||||
model_name=model_name,
|
||||
)
|
||||
|
||||
cap = cv2.VideoCapture(source if isinstance(source, str) else int(source))
|
||||
if not cap.isOpened():
|
||||
logger.error(f"Cannot open video source: {source}")
|
||||
return
|
||||
|
||||
# Get video properties
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for output file
|
||||
# Ensure the output directory exists if output_path is provided
|
||||
if output_path:
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
# Initialize video writer if output_path is provided
|
||||
video_writer = (
|
||||
cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
||||
if output_path
|
||||
else None
|
||||
)
|
||||
|
||||
freezed_img = None
|
||||
freeze = False
|
||||
num_frames_with_faces = 0
|
||||
tic = time.time()
|
||||
|
||||
cap = cv2.VideoCapture(source) # webcam
|
||||
while True:
|
||||
has_frame, img = cap.read()
|
||||
if not has_frame:
|
||||
@ -91,9 +114,9 @@ def analysis(
|
||||
# we are adding some figures into img such as identified facial image, age, gender
|
||||
# that is why, we need raw image itself to make analysis
|
||||
raw_img = img.copy()
|
||||
|
||||
faces_coordinates = []
|
||||
if freeze is False:
|
||||
|
||||
if not freeze:
|
||||
faces_coordinates = grab_facial_areas(
|
||||
img=img, detector_backend=detector_backend, anti_spoofing=anti_spoofing
|
||||
)
|
||||
@ -101,7 +124,6 @@ def analysis(
|
||||
# we will pass img to analyze modules (identity, demography) and add some illustrations
|
||||
# that is why, we will not be able to extract detected face from img clearly
|
||||
detected_faces = extract_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||
|
||||
img = highlight_facial_areas(img=img, faces_coordinates=faces_coordinates)
|
||||
img = countdown_to_freeze(
|
||||
img=img,
|
||||
@ -111,8 +133,8 @@ def analysis(
|
||||
)
|
||||
|
||||
num_frames_with_faces = num_frames_with_faces + 1 if len(faces_coordinates) else 0
|
||||
|
||||
freeze = num_frames_with_faces > 0 and num_frames_with_faces % frame_threshold == 0
|
||||
|
||||
if freeze:
|
||||
# add analyze results into img - derive from raw_img
|
||||
img = highlight_facial_areas(
|
||||
@ -144,22 +166,28 @@ def analysis(
|
||||
tic = time.time()
|
||||
logger.info("freezed")
|
||||
|
||||
elif freeze is True and time.time() - tic > time_threshold:
|
||||
elif freeze and time.time() - tic > time_threshold:
|
||||
freeze = False
|
||||
freezed_img = None
|
||||
# reset counter for freezing
|
||||
tic = time.time()
|
||||
logger.info("freeze released")
|
||||
logger.info("Freeze released")
|
||||
|
||||
freezed_img = countdown_to_release(img=freezed_img, tic=tic, time_threshold=time_threshold)
|
||||
display_img = img if freezed_img is None else freezed_img
|
||||
|
||||
cv2.imshow("img", img if freezed_img is None else freezed_img)
|
||||
# Save the frame to output video if writer is initialized
|
||||
if video_writer:
|
||||
video_writer.write(display_img)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"): # press q to quit
|
||||
cv2.imshow("img", display_img)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# kill open cv things
|
||||
# Release resources
|
||||
cap.release()
|
||||
if video_writer:
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
|
@ -95,12 +95,23 @@ def test_filetype_for_find():
|
||||
|
||||
|
||||
def test_filetype_for_find_bulk_embeddings():
|
||||
imgs = image_utils.list_images("dataset")
|
||||
# List
|
||||
list_imgs = image_utils.list_images("dataset")
|
||||
|
||||
assert len(imgs) > 0
|
||||
assert len(list_imgs) > 0
|
||||
|
||||
# img47 is webp even though its extension is jpg
|
||||
assert "dataset/img47.jpg" not in imgs
|
||||
assert "dataset/img47.jpg" not in list_imgs
|
||||
|
||||
# Generator
|
||||
gen_imgs = list(image_utils.yield_images("dataset"))
|
||||
|
||||
assert len(gen_imgs) > 0
|
||||
|
||||
# img47 is webp even though its extension is jpg
|
||||
assert "dataset/img47.jpg" not in gen_imgs
|
||||
|
||||
assert gen_imgs == list_imgs
|
||||
|
||||
|
||||
def test_find_without_refresh_database():
|
||||
|
@ -1,5 +1,7 @@
|
||||
# built-in dependencies
|
||||
import io
|
||||
import cv2
|
||||
import pytest
|
||||
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
@ -18,6 +20,25 @@ def test_standard_represent():
|
||||
logger.info("✅ test standard represent function done")
|
||||
|
||||
|
||||
def test_standard_represent_with_io_object():
|
||||
img_path = "dataset/img1.jpg"
|
||||
default_embedding_objs = DeepFace.represent(img_path)
|
||||
io_embedding_objs = DeepFace.represent(open(img_path, 'rb'))
|
||||
assert default_embedding_objs == io_embedding_objs
|
||||
|
||||
# Confirm non-seekable io objects are handled properly
|
||||
io_obj = io.BytesIO(open(img_path, 'rb').read())
|
||||
io_obj.seek = None
|
||||
no_seek_io_embedding_objs = DeepFace.represent(io_obj)
|
||||
assert default_embedding_objs == no_seek_io_embedding_objs
|
||||
|
||||
# Confirm non-image io objects raise exceptions
|
||||
with pytest.raises(ValueError, match='Failed to decode image'):
|
||||
DeepFace.represent(io.BytesIO(open(r'../requirements.txt', 'rb').read()))
|
||||
|
||||
logger.info("✅ test standard represent with io object function done")
|
||||
|
||||
|
||||
def test_represent_for_skipped_detector_backend_with_image_path():
|
||||
face_img = "dataset/img5.jpg"
|
||||
img_objs = DeepFace.represent(img_path=face_img, detector_backend="skip")
|
||||
|
Loading…
x
Reference in New Issue
Block a user