Update README.md

This commit is contained in:
Narra_Venkata_Raghu_Charan 2025-03-03 17:39:31 +05:30 committed by GitHub
parent ff0ccd6b87
commit 8b2adb17d4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -36,7 +36,7 @@
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/deepface-icon-labeled.png" width="200" height="240"></p>
DeepFace is a lightweight [face recognition](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/) and facial attribute analysis ([age](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [gender](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [emotion](https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/) and [race](https://sefiks.com/2019/11/11/race-and-ethnicity-prediction-in-keras/)) framework for python. It is a hybrid face recognition framework wrapping **state-of-the-art** models: [`VGG-Face`](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/), [`FaceNet`](https://sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/), [`OpenFace`](https://sefiks.com/2019/07/21/face-recognition-with-openface-in-keras/), [`DeepFace`](https://sefiks.com/2020/02/17/face-recognition-with-facebook-deepface-in-keras/), [`DeepID`](https://sefiks.com/2020/06/16/face-recognition-with-deepid-in-keras/), [`ArcFace`](https://sefiks.com/2020/12/14/deep-face-recognition-with-arcface-in-keras-and-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), [`Insightface's Buffalo_L`](https://github.com/deepinsight/insightface/tree/master/model_zoo), `SFace`, `GhostFaceNet`.
DeepFace is a lightweight [face recognition](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/) and facial attribute analysis ([age](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [gender](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [emotion](https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/) and [race](https://sefiks.com/2019/11/11/race-and-ethnicity-prediction-in-keras/)) framework for python. It is a hybrid face recognition framework wrapping **state-of-the-art** models: [`VGG-Face`](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/), [`FaceNet`](https://sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/), [`OpenFace`](https://sefiks.com/2019/07/21/face-recognition-with-openface-in-keras/), [`DeepFace`](https://sefiks.com/2020/02/17/face-recognition-with-facebook-deepface-in-keras/), [`DeepID`](https://sefiks.com/2020/06/16/face-recognition-with-deepid-in-keras/), [`ArcFace`](https://sefiks.com/2020/12/14/deep-face-recognition-with-arcface-in-keras-and-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), `SFace`, `GhostFaceNet`, `Insightface's Buffalo_L`.
[`Experiments`](https://github.com/serengil/deepface/tree/master/benchmarks) show that **human beings have 97.53% accuracy** on facial recognition tasks whereas those models already reached and passed that accuracy level.
@ -121,7 +121,7 @@ Here, embedding is also [plotted](https://sefiks.com/2020/05/01/a-gentle-introdu
**Face recognition models** - [`Demo`](https://youtu.be/eKOZawGR3y0)
DeepFace is a **hybrid** face recognition package. It currently wraps many **state-of-the-art** face recognition models: [`VGG-Face`](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/) , [`FaceNet`](https://sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/), [`OpenFace`](https://sefiks.com/2019/07/21/face-recognition-with-openface-in-keras/), [`DeepFace`](https://sefiks.com/2020/02/17/face-recognition-with-facebook-deepface-in-keras/), [`DeepID`](https://sefiks.com/2020/06/16/face-recognition-with-deepid-in-keras/), [`ArcFace`](https://sefiks.com/2020/12/14/deep-face-recognition-with-arcface-in-keras-and-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/),[`Insightface's Buffalo_L`](https://github.com/deepinsight/insightface/tree/master/model_zoo), `SFace` and `GhostFaceNet`. The default configuration uses VGG-Face model.
DeepFace is a **hybrid** face recognition package. It currently wraps many **state-of-the-art** face recognition models: [`VGG-Face`](https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/) , [`FaceNet`](https://sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/), [`OpenFace`](https://sefiks.com/2019/07/21/face-recognition-with-openface-in-keras/), [`DeepFace`](https://sefiks.com/2020/02/17/face-recognition-with-facebook-deepface-in-keras/), [`DeepID`](https://sefiks.com/2020/06/16/face-recognition-with-deepid-in-keras/), [`ArcFace`](https://sefiks.com/2020/12/14/deep-face-recognition-with-arcface-in-keras-and-python/), [`Dlib`](https://sefiks.com/2020/07/11/face-recognition-with-dlib-in-python/), `SFace`, `GhostFaceNet` and `Insightface's Buffalo_L`. The default configuration uses VGG-Face model.
```python
models = [
@ -135,7 +135,7 @@ models = [
"Dlib",
"SFace",
"GhostFaceNet",
"Buffalo_L" (InsightFace-based, requires additional dependencies; see Installation)
"Buffalo_L"
]
@ -160,7 +160,6 @@ embedding_objs = DeepFace.represent(
)
```
**Note:** The `Buffalo_L` model uses InsightFaces `webface_r50.onnx`. If automated download fails, manually download it from [here](https://drive.google.com/file/d/1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg/view?usp=sharing) and place it in `~/.deepface/weights/buffalo_l/`.
<p align="center"><img src="https://raw.githubusercontent.com/serengil/deepface/master/icon/model-portfolio-20240316.jpg" width="95%" height="95%"></p>
@ -207,9 +206,6 @@ dfs = DeepFace.find(
)
```
**Note:** The `Buffalo_L` model works best with cosine similarity. you can play around with the thresholds as it pleases you.
**Facial Attribute Analysis** - [`Demo`](https://youtu.be/GT2UeN85BdA)
DeepFace also comes with a strong facial attribute analysis module including [`age`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`gender`](https://sefiks.com/2019/02/13/apparent-age-and-gender-prediction-in-keras/), [`facial expression`](https://sefiks.com/2018/01/01/facial-expression-recognition-with-keras/) (including angry, fear, neutral, sad, disgust, happy and surprise) and [`race`](https://sefiks.com/2019/11/11/race-and-ethnicity-prediction-in-keras/) (including asian, white, middle eastern, indian, latino and black) predictions. Result is going to be the size of faces appearing in the source image.