mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
some linting comments after yunet implementation
This commit is contained in:
parent
0879926e51
commit
8bb52c0317
@ -1,21 +1,22 @@
|
||||
import cv2
|
||||
import os
|
||||
import cv2
|
||||
import gdown
|
||||
from deepface.detectors import FaceDetector
|
||||
from deepface.commons import functions
|
||||
|
||||
|
||||
def build_model():
|
||||
url = "https://github.com/opencv/opencv_zoo/raw/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx"
|
||||
url = (
|
||||
"https://github.com/opencv/opencv_zoo/raw/main/models/"
|
||||
+ "face_detection_yunet/face_detection_yunet_2023mar.onnx"
|
||||
)
|
||||
file_name = "face_detection_yunet_2023mar.onnx"
|
||||
home = functions.get_deepface_home()
|
||||
if os.path.isfile(home + f"/.deepface/weights/{file_name}") is False:
|
||||
print(f"{file_name} will be downloaded...")
|
||||
output = home + f"/.deepface/weights/{file_name}"
|
||||
gdown.download(url, output, quiet=False)
|
||||
face_detector = cv2.FaceDetectorYN_create(
|
||||
home + f"/.deepface/weights/{file_name}", "", (0, 0)
|
||||
)
|
||||
face_detector = cv2.FaceDetectorYN_create(home + f"/.deepface/weights/{file_name}", "", (0, 0))
|
||||
return face_detector
|
||||
|
||||
|
||||
@ -43,14 +44,16 @@ def detect_face(detector, image, align=True, score_threshold=0.9):
|
||||
if faces is None:
|
||||
return resp
|
||||
for face in faces:
|
||||
"""
|
||||
The detection output faces is a two-dimension array of type CV_32F,
|
||||
whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks.
|
||||
The format of each row is as follows:
|
||||
x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm,
|
||||
where x1, y1, w, h are the top-left coordinates, width and height of the face bounding box,
|
||||
{x, y}_{re, le, nt, rcm, lcm} stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively.
|
||||
"""
|
||||
# The detection output faces is a two-dimension array of type CV_32F,
|
||||
# whose rows are the detected face instances,
|
||||
# columns are the location of a face and 5 facial landmarks.
|
||||
# The format of each row is as follows:
|
||||
# x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm,
|
||||
# where x1, y1, w, h are the top-left coordinates,
|
||||
# width and height of the face bounding box,
|
||||
# {x, y}_{re, le, nt, rcm, lcm} stands for the coordinates of
|
||||
# right eye, left eye, nose tip, the right corner and left corner
|
||||
# of the mouth respectively.
|
||||
(x, y, w, h, x_re, y_re, x_le, y_le) = list(map(int, face[:8]))
|
||||
if resized:
|
||||
image = original_image
|
||||
@ -62,7 +65,7 @@ def detect_face(detector, image, align=True, score_threshold=0.9):
|
||||
int(y_le / r),
|
||||
)
|
||||
confidence = face[-1]
|
||||
confidence = "{:.2f}".format(confidence)
|
||||
confidence = f"{confidence:.2f}"
|
||||
detected_face = image[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
img_region = [x, y, w, h]
|
||||
if align:
|
||||
|
Loading…
x
Reference in New Issue
Block a user