mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
Allow silent operation for find()
This commit is contained in:
parent
b13cca851f
commit
8ceadea6ae
@ -466,7 +466,7 @@ def analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models =
|
|||||||
|
|
||||||
return resp_obj
|
return resp_obj
|
||||||
|
|
||||||
def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv', align = True, prog_bar = True, normalization = 'base'):
|
def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv', align = True, prog_bar = True, normalization = 'base', silent=False):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This function applies verification several times and find an identity in a database
|
This function applies verification several times and find an identity in a database
|
||||||
@ -505,7 +505,7 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
if model == None:
|
if model == None:
|
||||||
|
|
||||||
if model_name == 'Ensemble':
|
if model_name == 'Ensemble':
|
||||||
print("Ensemble learning enabled")
|
if not silent: print("Ensemble learning enabled")
|
||||||
models = Boosting.loadModel()
|
models = Boosting.loadModel()
|
||||||
|
|
||||||
else: #model is not ensemble
|
else: #model is not ensemble
|
||||||
@ -514,7 +514,7 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
models[model_name] = model
|
models[model_name] = model
|
||||||
|
|
||||||
else: #model != None
|
else: #model != None
|
||||||
print("Already built model is passed")
|
if not silent: print("Already built model is passed")
|
||||||
|
|
||||||
if model_name == 'Ensemble':
|
if model_name == 'Ensemble':
|
||||||
Boosting.validate_model(model)
|
Boosting.validate_model(model)
|
||||||
@ -540,12 +540,12 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
|
|
||||||
if path.exists(db_path+"/"+file_name):
|
if path.exists(db_path+"/"+file_name):
|
||||||
|
|
||||||
print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")
|
if not silent: print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")
|
||||||
|
|
||||||
f = open(db_path+'/'+file_name, 'rb')
|
f = open(db_path+'/'+file_name, 'rb')
|
||||||
representations = pickle.load(f)
|
representations = pickle.load(f)
|
||||||
|
|
||||||
print("There are ", len(representations)," representations found in ",file_name)
|
if not silent: print("There are ", len(representations)," representations found in ",file_name)
|
||||||
|
|
||||||
else: #create representation.pkl from scratch
|
else: #create representation.pkl from scratch
|
||||||
employees = []
|
employees = []
|
||||||
@ -593,7 +593,7 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
pickle.dump(representations, f)
|
pickle.dump(representations, f)
|
||||||
f.close()
|
f.close()
|
||||||
|
|
||||||
print("Representations stored in ",db_path,"/",file_name," file. Please delete this file when you add new identities in your database.")
|
if not silent: print("Representations stored in ",db_path,"/",file_name," file. Please delete this file when you add new identities in your database.")
|
||||||
|
|
||||||
#----------------------------
|
#----------------------------
|
||||||
#now, we got representations for facial database
|
#now, we got representations for facial database
|
||||||
@ -704,7 +704,7 @@ def find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine',
|
|||||||
|
|
||||||
toc = time.time()
|
toc = time.time()
|
||||||
|
|
||||||
print("find function lasts ",toc-tic," seconds")
|
if not silent: print("find function lasts ",toc-tic," seconds")
|
||||||
|
|
||||||
if len(resp_obj) == 1:
|
if len(resp_obj) == 1:
|
||||||
return resp_obj[0]
|
return resp_obj[0]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user