diff --git a/README.md b/README.md index ca2701d..3ea7385 100644 --- a/README.md +++ b/README.md @@ -25,7 +25,6 @@ Verification function under the DeepFace interface offers a single face recognit ```python from deepface import DeepFace result = DeepFace.verify("img1.jpg", "img2.jpg") - print("Is verified: ", result["verified"]) ``` @@ -50,10 +49,7 @@ You can apply face recognition on a [large scale](https://sefiks.com/2020/05/25/ ```python from deepface import DeepFace import pandas as pd - df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db") -print(df.head()) - #dfs = DeepFace.find(img_path = ["img1.jpg", "img2.jpg"], db_path = "C:/workspace/my_db") ``` @@ -111,10 +107,8 @@ Deepface also offers facial attribute analysis including [`age`](https://sefiks. ```python from deepface import DeepFace -demography = DeepFace.analyze("img4.jpg") #passing nothing as 2nd argument will find everything -#demography = DeepFace.analyze("img4.jpg", ['age', 'gender', 'race', 'emotion']) #identical to the line above +demography = DeepFace.analyze("img4.jpg", actions = ['age', 'gender', 'race', 'emotion']) #demographies = DeepFace.analyze(["img1.jpg", "img2.jpg", "img3.jpg"]) #analyzing multiple faces same time - print("Age: ", demography["age"]) print("Gender: ", demography["gender"]) print("Emotion: ", demography["dominant_emotion"]) @@ -137,13 +131,11 @@ You can build facial attribute analysis models once and pass these to analyze fu ```python import json from deepface.extendedmodels import Age, Gender, Race, Emotion - models = {} models["emotion"] = Emotion.loadModel() models["age"] = Age.loadModel() models["gender"] = Gender.loadModel() models["race"] = Race.loadModel() - DeepFace.analyze("img1.jpg", models=models) ```