Load models to memory

2 new functions:
verify_init(model_name)
analyze_init(models)

The functions created in order to pre load models to memory for shorter analzye / verify first time
Ex:
Real time analyze waiting for first face to show
without analyze_init()
first analyze takes 1.5 sec
with analyze_init()
first analyze takes 0.3 sec
This commit is contained in:
Uria Franko 2020-04-16 10:37:23 +03:00
parent 8cc09f4314
commit 93c9462161

View File

@ -21,73 +21,117 @@ from deepface.extendedmodels import Age, Gender, Race, Emotion
from deepface.commons import functions, realtime, distance as dst
def analyze_init(models = []):
#---------------------------------
#if a specific target is not passed, then find them all
if len(models) == 0:
models = ['emotion', 'age', 'gender', 'race']
print("Models to initialize: ", models)
#---------------------------------
if 'emotion' in models:
emotion_model = Emotion.loadModel()
if 'age' in models:
age_model = Age.loadModel()
if 'gender' in models:
gender_model = Gender.loadModel()
if 'race' in models:
race_model = Race.loadModel()
def verify_init(model_name = 'VGG-Face'):
if model_name == 'VGG-Face':
print("Loading %s model" % model_name)
model = VGGFace.loadModel()
elif model_name == 'OpenFace':
print("Loading %s model" % model_name)
model = OpenFace.loadModel()
elif model_name == 'Facenet':
print("Loading %s model" % model_name)
model = Facenet.loadModel()
elif model_name == 'DeepFace':
print("Loading %s model" % model_name)
model = FbDeepFace.loadModel()
else:
raise ValueError("Invalid model_name passed - ", model_name)
def verify(img1_path, img2_path=''
, model_name ='VGG-Face', distance_metric = 'cosine', model = None):
tic = time.time()
if type(img1_path) == list:
bulkProcess = True
img_list = img1_path.copy()
else:
bulkProcess = False
img_list = [[img1_path, img2_path]]
#------------------------------
if model == None:
if model_name == 'VGG-Face':
print("Using VGG-Face model backend and", distance_metric,"distance.")
model = VGGFace.loadModel()
elif model_name == 'OpenFace':
print("Using OpenFace model backend", distance_metric,"distance.")
model = OpenFace.loadModel()
elif model_name == 'Facenet':
print("Using Facenet model backend", distance_metric,"distance.")
model = Facenet.loadModel()
elif model_name == 'DeepFace':
print("Using FB DeepFace model backend", distance_metric,"distance.")
model = FbDeepFace.loadModel()
else:
raise ValueError("Invalid model_name passed - ", model_name)
else: #model != None
print("Already built model is passed")
#------------------------------
#face recognition models have different size of inputs
input_shape = model.layers[0].input_shape[1:3]
#------------------------------
#tuned thresholds for model and metric pair
threshold = functions.findThreshold(model_name, distance_metric)
#------------------------------
resp_objects = []
for instance in img_list:
if type(instance) == list and len(instance) >= 2:
img1_path = instance[0]
img2_path = instance[1]
#----------------------
#crop and align faces
img1 = functions.detectFace(img1_path, input_shape)
img2 = functions.detectFace(img2_path, input_shape)
#----------------------
#find embeddings
img1_representation = model.predict(img1)[0,:]
img2_representation = model.predict(img2)[0,:]
#----------------------
#find distances between embeddings
if distance_metric == 'cosine':
distance = dst.findCosineDistance(img1_representation, img2_representation)
elif distance_metric == 'euclidean':
@ -96,18 +140,18 @@ def verify(img1_path, img2_path=''
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
#----------------------
#decision
if distance <= threshold:
identified = "true"
else:
identified = "false"
#----------------------
#response object
resp_obj = "{"
resp_obj += "\"verified\": "+identified
resp_obj += ", \"distance\": "+str(distance)
@ -115,30 +159,30 @@ def verify(img1_path, img2_path=''
resp_obj += ", \"model\": \""+model_name+"\""
resp_obj += ", \"similarity_metric\": \""+distance_metric+"\""
resp_obj += "}"
resp_obj = json.loads(resp_obj) #string to json
if bulkProcess == True:
resp_objects.append(resp_obj)
else:
K.clear_session()
return resp_obj
#----------------------
else:
raise ValueError("Invalid arguments passed to verify function: ", instance)
#-------------------------
toc = time.time()
#print("identification lasts ",toc-tic," seconds")
if bulkProcess == True:
resp_obj = "{"
for i in range(0, len(resp_objects)):
resp_item = json.dumps(resp_objects[i])
resp_item = json.dumps(resp_objects[i])
if i > 0:
resp_obj += ", "
@ -157,129 +201,129 @@ def analyze(img_path, actions= []):
else:
img_paths = [img_path]
bulkProcess = False
#---------------------------------
#if a specific target is not passed, then find them all
if len(actions) == 0:
actions= ['emotion', 'age', 'gender', 'race']
print("Actions to do: ", actions)
#---------------------------------
if 'emotion' in actions:
emotion_model = Emotion.loadModel()
if 'age' in actions:
age_model = Age.loadModel()
if 'gender' in actions:
gender_model = Gender.loadModel()
if 'race' in actions:
race_model = Race.loadModel()
#---------------------------------
resp_objects = []
for img_path in img_paths:
resp_obj = "{"
#TO-DO: do this in parallel
pbar = tqdm(range(0,len(actions)), desc='Finding actions')
action_idx = 0
#for action in actions:
for index in pbar:
action = actions[index]
pbar.set_description("Action: %s" % (action))
if action_idx > 0:
resp_obj += ", "
if action == 'emotion':
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
img = functions.detectFace(img_path, (48, 48), True)
emotion_predictions = emotion_model.predict(img)[0,:]
sum_of_predictions = emotion_predictions.sum()
emotion_obj = "\"emotion\": {"
for i in range(0, len(emotion_labels)):
emotion_label = emotion_labels[i]
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
if i > 0: emotion_obj += ", "
emotion_obj += "\"%s\": %s" % (emotion_label, emotion_prediction)
emotion_obj += "}"
emotion_obj += ", \"dominant_emotion\": \"%s\"" % (emotion_labels[np.argmax(emotion_predictions)])
resp_obj += emotion_obj
elif action == 'age':
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
#print("age prediction")
age_predictions = age_model.predict(img)[0,:]
apparent_age = Age.findApparentAge(age_predictions)
resp_obj += "\"age\": %s" % (apparent_age)
elif action == 'gender':
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
#print("gender prediction")
gender_prediction = gender_model.predict(img)[0,:]
if np.argmax(gender_prediction) == 0:
gender = "Woman"
elif np.argmax(gender_prediction) == 1:
gender = "Man"
resp_obj += "\"gender\": \"%s\"" % (gender)
elif action == 'race':
img = functions.detectFace(img_path, (224, 224), False) #just emotion model expects grayscale images
race_predictions = race_model.predict(img)[0,:]
race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
sum_of_predictions = race_predictions.sum()
race_obj = "\"race\": {"
for i in range(0, len(race_labels)):
race_label = race_labels[i]
race_prediction = 100 * race_predictions[i] / sum_of_predictions
if i > 0: race_obj += ", "
race_obj += "\"%s\": %s" % (race_label, race_prediction)
race_obj += "}"
race_obj += ", \"dominant_race\": \"%s\"" % (race_labels[np.argmax(race_predictions)])
resp_obj += race_obj
action_idx = action_idx + 1
resp_obj += "}"
resp_obj = json.loads(resp_obj)
if bulkProcess == True:
resp_objects.append(resp_obj)
else:
return resp_obj
if bulkProcess == True:
resp_obj = "{"
for i in range(0, len(resp_objects)):
resp_item = json.dumps(resp_objects[i])
resp_item = json.dumps(resp_objects[i])
if i > 0:
resp_obj += ", "