version 0.0.52

This commit is contained in:
Sefik Ilkin Serengil 2021-05-27 22:41:51 +03:00
parent 3cd55fcf00
commit 9af7c33ff7
6 changed files with 198 additions and 94 deletions

View File

@ -261,6 +261,86 @@ def verifyWrapper(req, trx_id = 0):
return resp_obj return resp_obj
@app.route('/represent', methods=['POST'])
def represent():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
resp_obj = jsonify({'success': False})
if tf_version == 1:
with graph.as_default():
resp_obj = representWrapper(req, trx_id)
elif tf_version == 2:
resp_obj = representWrapper(req, trx_id)
#--------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
def representWrapper(req, trx_id = 0):
resp_obj = jsonify({'success': False})
#-------------------------------------
#find out model
model_name = "VGG-Face"; distance_metric = "cosine"
if "model_name" in list(req.keys()):
model_name = req["model_name"]
#-------------------------------------
#retrieve images from request
img = ""
if "img" in list(req.keys()):
img = req["img"] #list
#print("img: ", img)
validate_img = False
if len(img) > 11 and img[0:11] == "data:image/":
validate_img = True
if validate_img != True:
print("invalid image passed!")
return jsonify({'success': False, 'error': 'you must pass img as base64 encoded string'}), 205
#-------------------------------------
#cal represent function from the interface
embedding = []
if model_name == "VGG-Face":
embedding = DeepFace.represent(img, model_name = model_name, model = vggface_model)
elif model_name == "Facenet":
embedding = DeepFace.represent(img, model_name = model_name, model = facenet_model)
elif model_name == "OpenFace":
embedding = DeepFace.represent(img, model_name = model_name, model = openface_model)
elif model_name == "DeepFace":
embedding = DeepFace.represent(img, model_name = model_name, model = deepface_model)
elif model_name == "DeepID":
embedding = DeepFace.represent(img, model_name = model_name, model = deepid_model)
elif model_name == "ArcFace":
embedding = DeepFace.represent(img, model_name = model_name, model = arcface_model)
else:
resp_obj = jsonify({'success': False, 'error': 'You must pass a valid model name. You passed %s' % (model_name)}), 205
#print("embedding is ", len(embedding)," dimensional vector")
resp_obj = {}
resp_obj["embedding"] = embedding
#-------------------------------------
return resp_obj
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument( parser.add_argument(

File diff suppressed because one or more lines are too long

View File

@ -16,7 +16,7 @@ elif tf_version == 2:
from tensorflow.keras.models import Model, Sequential from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation from tensorflow.keras.layers import Convolution2D, Flatten, Activation
def loadModel(): def loadModel(url = 'https://drive.google.com/uc?id=1YCox_4kJ-BYeXq27uUbasu--yz28zUMV'):
model = VGGFace.baseModel() model = VGGFace.baseModel()
@ -41,7 +41,6 @@ def loadModel():
if os.path.isfile(home+'/.deepface/weights/age_model_weights.h5') != True: if os.path.isfile(home+'/.deepface/weights/age_model_weights.h5') != True:
print("age_model_weights.h5 will be downloaded...") print("age_model_weights.h5 will be downloaded...")
url = 'https://drive.google.com/uc?id=1YCox_4kJ-BYeXq27uUbasu--yz28zUMV'
output = home+'/.deepface/weights/age_model_weights.h5' output = home+'/.deepface/weights/age_model_weights.h5'
gdown.download(url, output, quiet=False) gdown.download(url, output, quiet=False)

View File

@ -15,7 +15,7 @@ elif tf_version == 2:
from tensorflow.keras.models import Model, Sequential from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
def loadModel(): def loadModel(url = 'https://drive.google.com/uc?id=13iUHHP3SlNg53qSuQZDdHDSDNdBP9nwy'):
num_classes = 7 num_classes = 7
@ -55,7 +55,6 @@ def loadModel():
#TO-DO: upload weights to google drive #TO-DO: upload weights to google drive
#zip #zip
url = 'https://drive.google.com/uc?id=13iUHHP3SlNg53qSuQZDdHDSDNdBP9nwy'
output = home+'/.deepface/weights/facial_expression_model_weights.zip' output = home+'/.deepface/weights/facial_expression_model_weights.zip'
gdown.download(url, output, quiet=False) gdown.download(url, output, quiet=False)
@ -66,7 +65,3 @@ def loadModel():
model.load_weights(home+'/.deepface/weights/facial_expression_model_weights.h5') model.load_weights(home+'/.deepface/weights/facial_expression_model_weights.h5')
return model return model
#----------------------------
return 0

View File

@ -14,7 +14,7 @@ elif tf_version == 2:
from tensorflow.keras.models import Model, Sequential from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation from tensorflow.keras.layers import Convolution2D, Flatten, Activation
def loadModel(): def loadModel(url = 'https://drive.google.com/uc?id=1wUXRVlbsni2FN9-jkS_f4UTUrm1bRLyk'):
model = VGGFace.baseModel() model = VGGFace.baseModel()
@ -39,7 +39,6 @@ def loadModel():
if os.path.isfile(home+'/.deepface/weights/gender_model_weights.h5') != True: if os.path.isfile(home+'/.deepface/weights/gender_model_weights.h5') != True:
print("gender_model_weights.h5 will be downloaded...") print("gender_model_weights.h5 will be downloaded...")
url = 'https://drive.google.com/uc?id=1wUXRVlbsni2FN9-jkS_f4UTUrm1bRLyk'
output = home+'/.deepface/weights/gender_model_weights.h5' output = home+'/.deepface/weights/gender_model_weights.h5'
gdown.download(url, output, quiet=False) gdown.download(url, output, quiet=False)

View File

@ -16,7 +16,7 @@ elif tf_version == 2:
from tensorflow.keras.models import Model, Sequential from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation from tensorflow.keras.layers import Convolution2D, Flatten, Activation
def loadModel(): def loadModel(url = 'https://drive.google.com/uc?id=1nz-WDhghGQBC4biwShQ9kYjvQMpO6smj'):
model = VGGFace.baseModel() model = VGGFace.baseModel()
@ -42,7 +42,6 @@ def loadModel():
print("race_model_single_batch.h5 will be downloaded...") print("race_model_single_batch.h5 will be downloaded...")
#zip #zip
url = 'https://drive.google.com/uc?id=1nz-WDhghGQBC4biwShQ9kYjvQMpO6smj'
output = home+'/.deepface/weights/race_model_single_batch.zip' output = home+'/.deepface/weights/race_model_single_batch.zip'
gdown.download(url, output, quiet=False) gdown.download(url, output, quiet=False)