diff --git a/deepface/detectors/YunetWrapper.py b/deepface/detectors/YunetWrapper.py index cc3d3d3..05d990a 100644 --- a/deepface/detectors/YunetWrapper.py +++ b/deepface/detectors/YunetWrapper.py @@ -6,10 +6,8 @@ from deepface.commons import functions def build_model(): - url = ( - "https://github.com/opencv/opencv_zoo/raw/main/models/" - + "face_detection_yunet/face_detection_yunet_2023mar.onnx" - ) + # pylint: disable=C0301 + url = "https://github.com/opencv/opencv_zoo/raw/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx" file_name = "face_detection_yunet_2023mar.onnx" home = functions.get_deepface_home() if os.path.isfile(home + f"/.deepface/weights/{file_name}") is False: @@ -44,9 +42,10 @@ def detect_face(detector, image, align=True, score_threshold=0.9): if faces is None: return resp for face in faces: + # pylint: disable=W0105 """ The detection output faces is a two-dimension array of type CV_32F, - whose rows are the detected face instances, columns are the location + whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks. The format of each row is as follows: x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, @@ -58,7 +57,7 @@ def detect_face(detector, image, align=True, score_threshold=0.9): """ (x, y, w, h, x_re, y_re, x_le, y_le) = list(map(int, face[:8])) - # Yunet returns negative coordinates if it thinks part of + # Yunet returns negative coordinates if it thinks part of # the detected face is outside the frame. # We set the coordinate to 0 if they are negative. x = max(x, 0)