mirror of
https://github.com/serengil/deepface.git
synced 2025-06-06 11:35:21 +00:00
refactor test
This commit is contained in:
parent
8becc97512
commit
9e12c92d8a
@ -3,6 +3,7 @@ import io
|
||||
import cv2
|
||||
import pytest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
# project dependencies
|
||||
from deepface import DeepFace
|
||||
@ -84,7 +85,19 @@ def test_max_faces():
|
||||
assert len(results) == max_faces
|
||||
|
||||
|
||||
def test_batched_represent():
|
||||
@pytest.mark.parametrize("model_name", [
|
||||
"VGG-Face",
|
||||
"Facenet",
|
||||
"Facenet512",
|
||||
"OpenFace",
|
||||
"DeepFace",
|
||||
"DeepID",
|
||||
"Dlib",
|
||||
"ArcFace",
|
||||
"SFace",
|
||||
"GhostFaceNet"
|
||||
])
|
||||
def test_batched_represent(model_name):
|
||||
img_paths = [
|
||||
"dataset/img1.jpg",
|
||||
"dataset/img2.jpg",
|
||||
@ -93,38 +106,26 @@ def test_batched_represent():
|
||||
"dataset/img5.jpg",
|
||||
]
|
||||
|
||||
def _test_for_model(model_name: str):
|
||||
embedding_objs = DeepFace.represent(img_path=img_paths, model_name=model_name)
|
||||
assert len(embedding_objs) == len(img_paths)
|
||||
if model_name == "VGG-Face":
|
||||
for embedding_obj in embedding_objs:
|
||||
embedding = embedding_obj["embedding"]
|
||||
logger.debug(f"Function returned {len(embedding)} dimensional vector")
|
||||
assert len(embedding) == 4096
|
||||
embedding_objs_one_by_one = [
|
||||
embedding_obj
|
||||
for img_path in img_paths
|
||||
for embedding_obj in DeepFace.represent(img_path=img_path, model_name=model_name)
|
||||
]
|
||||
for embedding_obj_one_by_one, embedding_obj in zip(embedding_objs_one_by_one, embedding_objs):
|
||||
assert np.allclose(
|
||||
embedding_obj_one_by_one["embedding"],
|
||||
embedding_obj["embedding"],
|
||||
rtol=1e-2,
|
||||
atol=1e-2
|
||||
)
|
||||
embedding_objs = DeepFace.represent(img_path=img_paths, model_name=model_name)
|
||||
assert len(embedding_objs) == len(img_paths), f"Expected {len(img_paths)} embeddings, got {len(embedding_objs)}"
|
||||
|
||||
for model_name in [
|
||||
"VGG-Face",
|
||||
"Facenet",
|
||||
"Facenet512",
|
||||
"OpenFace",
|
||||
# "DeepFace",
|
||||
"DeepID",
|
||||
# "Dlib",
|
||||
"ArcFace",
|
||||
"SFace",
|
||||
"GhostFaceNet"
|
||||
]:
|
||||
_test_for_model(model_name)
|
||||
logger.info("✅ test batch represent function done")
|
||||
if model_name == "VGG-Face":
|
||||
for embedding_obj in embedding_objs:
|
||||
embedding = embedding_obj["embedding"]
|
||||
logger.debug(f"Function returned {len(embedding)} dimensional vector")
|
||||
assert len(embedding) == 4096, f"Expected embedding of length 4096, got {len(embedding)}"
|
||||
|
||||
embedding_objs_one_by_one = [
|
||||
embedding_obj
|
||||
for img_path in img_paths
|
||||
for embedding_obj in DeepFace.represent(img_path=img_path, model_name=model_name)
|
||||
]
|
||||
for embedding_obj_one_by_one, embedding_obj in zip(embedding_objs_one_by_one, embedding_objs):
|
||||
assert np.allclose(
|
||||
embedding_obj_one_by_one["embedding"],
|
||||
embedding_obj["embedding"],
|
||||
rtol=1e-2,
|
||||
atol=1e-2
|
||||
), "Embeddings do not match within tolerance"
|
||||
|
||||
logger.info(f"✅ test batch represent function for model {model_name} done")
|
||||
|
Loading…
x
Reference in New Issue
Block a user