mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
walking enabled in db images
This commit is contained in:
parent
f90887c231
commit
9eaf86b27d
@ -4,6 +4,7 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import cv2
|
import cv2
|
||||||
import time
|
import time
|
||||||
|
import re
|
||||||
|
|
||||||
import os
|
import os
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
@ -27,7 +28,11 @@ def analysis(db_path, model_name, distance_metric, enable_face_analysis = True):
|
|||||||
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
||||||
for file in f:
|
for file in f:
|
||||||
if ('.jpg' in file):
|
if ('.jpg' in file):
|
||||||
employees.append(file)
|
#exact_path = os.path.join(r, file)
|
||||||
|
exact_path = r + "/" + file
|
||||||
|
#print(exact_path)
|
||||||
|
employees.append(exact_path)
|
||||||
|
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
|
|
||||||
@ -91,9 +96,9 @@ def analysis(db_path, model_name, distance_metric, enable_face_analysis = True):
|
|||||||
#for employee in employees:
|
#for employee in employees:
|
||||||
for index in pbar:
|
for index in pbar:
|
||||||
employee = employees[index]
|
employee = employees[index]
|
||||||
pbar.set_description("Finding embedding for %s" % (employee))
|
pbar.set_description("Finding embedding for %s" % (employee.split("/")[-1]))
|
||||||
embedding = []
|
embedding = []
|
||||||
img = functions.detectFace(db_path+"/"+employee, input_shape)
|
img = functions.detectFace(employee, input_shape)
|
||||||
img_representation = model.predict(img)[0,:]
|
img_representation = model.predict(img)[0,:]
|
||||||
|
|
||||||
embedding.append(employee)
|
embedding.append(employee)
|
||||||
@ -365,16 +370,15 @@ def analysis(db_path, model_name, distance_metric, enable_face_analysis = True):
|
|||||||
candidate = df.iloc[0]
|
candidate = df.iloc[0]
|
||||||
employee_name = candidate['employee']
|
employee_name = candidate['employee']
|
||||||
best_distance = candidate['distance']
|
best_distance = candidate['distance']
|
||||||
#employee_name = employee_name.replace("_", "")
|
|
||||||
|
|
||||||
if best_distance <= threshold:
|
if best_distance <= threshold:
|
||||||
#print(employee_name)
|
#print(employee_name)
|
||||||
display_img = cv2.imread("%s/%s" % (db_path, employee_name))
|
display_img = cv2.imread(employee_name)
|
||||||
|
|
||||||
display_img = cv2.resize(display_img, (pivot_img_size, pivot_img_size))
|
display_img = cv2.resize(display_img, (pivot_img_size, pivot_img_size))
|
||||||
|
|
||||||
label = employee_name.replace("_", "").replace(".jpg", "")+" ("+"{0:.2f}".format(best_distance)+")"
|
label = employee_name.split("/")[-1].replace(".jpg", "")
|
||||||
#label = employee_name.replace("_", "").replace(".jpg", "")
|
label = re.sub('[0-9]', '', label)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x:
|
if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user