Update minimum distance between embeddings calculation: fixes

This commit is contained in:
kremnik 2024-08-16 21:53:33 +03:00
parent ca1db5fac7
commit a2e590cfb0
2 changed files with 65 additions and 18 deletions

View File

@ -105,19 +105,54 @@ def verify(
)
dims = model.output_shape
def extract_faces_from_img(img_path, index=1):
# extract faces from img
no_facial_area = {
"x": None,
"y": None,
"w": None,
"h": None,
"left_eye": None,
"right_eye": None,
}
def extract_embeddings_and_facial_areas(
img_path: Union[str, np.ndarray, List[float]],
index: int
) -> Tuple[List[List[float]], List[dict]]:
"""
Extracts facial embeddings and corresponding facial areas from an
image or returns pre-calculated embeddings.
Depending on the type of img_path, the function either extracts
facial embeddings from the provided image
(via a path or NumPy array) or verifies that the input is a list of
pre-calculated embeddings and validates them.
Args:
img_path (Union[str, np.ndarray, List[float]]):
- A string representing the file path to an image,
- A NumPy array containing the image data,
- Or a list of pre-calculated embedding values (of type `float`).
index (int): An index value used in error messages and logging
to identify the number of the image.
Returns:
Tuple[List[List[float]], List[dict]]:
- A list containing lists of facial embeddings for each detected face.
- A list of dictionaries where each dictionary contains facial area information.
"""
if isinstance(img_path, list):
# given image is already pre-calculated embedding
if not all(isinstance(dim, float) for dim in img_path):
raise ValueError(
f"When passing img{index}_path as a list, ensure that all its items are of type float."
f"When passing img{index}_path as a list,"
" ensure that all its items are of type float."
)
if silent is False:
logger.warn(
"You passed 1st image as pre-calculated embeddings."
f"Please ensure that embeddings have been calculated for the {model_name} model."
"Please ensure that embeddings have been calculated"
f" for the {model_name} model."
)
if len(img_path) != dims:
@ -127,7 +162,7 @@ def verify(
)
img_embeddings = [img_path]
img_facial_areas = [None]
img_facial_areas = [no_facial_area]
else:
try:
img_embeddings, img_facial_areas = __extract_faces_and_embeddings(
@ -144,17 +179,8 @@ def verify(
raise ValueError(f"Exception while processing img{index}_path") from err
return img_embeddings, img_facial_areas
img1_embeddings, img1_facial_areas = extract_faces_from_img(img1_path, 1)
img2_embeddings, img2_facial_areas = extract_faces_from_img(img2_path, 2)
no_facial_area = {
"x": None,
"y": None,
"w": None,
"h": None,
"left_eye": None,
"right_eye": None,
}
img1_embeddings, img1_facial_areas = extract_embeddings_and_facial_areas(img1_path, 1)
img2_embeddings, img2_facial_areas = extract_embeddings_and_facial_areas(img2_path, 2)
min_distance, min_idx, min_idy = float("inf"), None, None
for idx, img1_embedding in enumerate(img1_embeddings):
@ -166,8 +192,10 @@ def verify(
# find the face pair with minimum distance
threshold = threshold or find_threshold(model_name, distance_metric)
distance = float(min_distance)
facial_areas = (no_facial_area, no_facial_area) if None in (min_idx, min_idy) else \
(img1_facial_areas[min_idx], img2_facial_areas[min_idy])
facial_areas = (
no_facial_area if min_idx is None else img1_facial_areas[min_idx],
no_facial_area if min_idy is None else img2_facial_areas[min_idy],
)
toc = time.time()

View File

@ -121,6 +121,25 @@ def test_verify_for_precalculated_embeddings():
assert result["verified"] is True
assert result["distance"] < result["threshold"]
assert result["model"] == model_name
assert result["facial_areas"]["img1"] is not None
assert result["facial_areas"]["img2"] is not None
assert isinstance(result["facial_areas"]["img1"], dict)
assert isinstance(result["facial_areas"]["img2"], dict)
assert "x" in result["facial_areas"]["img1"].keys()
assert "y" in result["facial_areas"]["img1"].keys()
assert "w" in result["facial_areas"]["img1"].keys()
assert "h" in result["facial_areas"]["img1"].keys()
assert "left_eye" in result["facial_areas"]["img1"].keys()
assert "right_eye" in result["facial_areas"]["img1"].keys()
assert "x" in result["facial_areas"]["img2"].keys()
assert "y" in result["facial_areas"]["img2"].keys()
assert "w" in result["facial_areas"]["img2"].keys()
assert "h" in result["facial_areas"]["img2"].keys()
assert "left_eye" in result["facial_areas"]["img2"].keys()
assert "right_eye" in result["facial_areas"]["img2"].keys()
logger.info("✅ test verify for pre-calculated embeddings done")